
M HumanFac(orsinComputingSysiems CHl’94* “Celebratinglnterde~endence”
I__

User Preferences for Task-specific vs. Generic
Application Software

Bonnie A. Nardi

Apple Computer

1 Infinite Loop

Cupertino CA 95014 USA

+1-408-974-8708 nardi @taurus.apple.com

Jeff A. Johnson

FirstPerson

100 Hamilton Avenue

Palo Alto CA 94301 USA

+1-415-473-7230 jjohnson Q2firstperson.com

ABSTRACT

We conducted an ethnographic study to investigate
the use of generic vs. task-specific application
software by people who create and maintain
presentation slides. Sixteen people were interviewed
to determine how they prepare slides; what software
they use; and how well the software supports various
aspects of the task. The informants varied in how
central slide preparation was to their jobs. The study
was motivated by our beliefs that: 1) some software
programs are task-generic, intended for use in a wide

variety of tasks, while others are task-specific,
intended to support very specific tasks; 2) task-

specific software is preferable, but is often not used
because of cost, learning effort, or lack of

availability; and 3) people who infrequently perform
a task tend to use generic tools, while people who
frequently perform a task tend to use task-specific
tools. Our findings suggest that the truth is more
complex: 1) task-specificity/genericness is not a
simple continuum; 2) a task cannot be looked at in
isolation without reference to a higher level goal; and
3) an alternative to task-specific programs is a
modular collection of independent interoperable
services supporting small subtasks.

KEYWORDS:

Task-specificity, task analysis, slidemaking, end user
computing, interoperability, collaborative work.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
diract commercial advantage, the ACM copyright notica and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
CH194-4/94 Boston, Massachusetts USA

01994 ACM 0-89791 -650 -6194 /0392 ...$3.50

INTRODUCTION

It is widely acknowledged that personal computing
has failed to achieve the ubiquity predicted in the late
Seventies, at the dawn of the personal computer age.
One reason is that most people are not interested in
using computers per se, but only in performing tasks
in their own familiar domains-tasks for which
computers often provide poor support, There is a
large gap between what users want to do to
accomplish their tasks and the unfamiliar constructs
presented by the computer [4, 6], The failure of
personal computers to become as ubiquitous as, say,
washing machines, should thus come as no surprise.
The predictions of the Seventies assumed a highly
computer-centric view of the world. This view is not
native to the average user who wishes to work in his
or her own domain-specific idiom, rather than be
forced to adopt the foreign jargon of the machine
(files and directories, commands and arguments,
control characters, cursors, modes, text strings,
selection, etc.),

An antidote to the limitations of computer-centric
software might be to provide highly task-specific
applications that leverage users’ familiar domain
knowledge and narrow the gap between what they
know and what the computer demands [1, 3,4,8, 10].
In this paper we try to pin down the nature of “task-
specificity. ” What does it mean for a computer
application to provide a high degree of support for a
task? In what ways do applications vary in their
degree of support for tasks? Under what
circumstances is a high degree of task support
necessary or unnecessary? Because of our interest in
fostering the development of task-specific

392

..,.

Boston,MassachusettsUSA~ April24-28,1994 HumanFactorsinComputingSystems

applications as a means of promoting end user

programming [5, 7], we conducted a study to gain
some insight into the determinants of user preferences
for task-specific vs. generic software, The task
domain we studied was the creation and editing of
slides for visual presentations.

In this paper, we first give some examples of
software applications and d~cuss their varying levels
of task-specificity. Next, we compare the support
that various types of programs provide for
.sIidemaking. Finally, we describe our study and
findings, and offer some conclusions.

Task=Specific VS. Generic 100is

What exactly do we mean by “task-specific”?
Consider the average kitchen. Most kitchens contain
a iarge variety of toots. Some tools are used in many
different tasks, e.g., knives, bowls, spoons, stoves,
pots. Others are used for a relatively small set of
tasks, e.g., blenders, peelers, tongs, basters, graters,
cutting boards, butter knives. Still others are used for
one task only, e.g., fish scalers, cheese slicers,
nutmeg grinders, apple corers, cookie cutters, coffee
makers.

For many tasks in which computers are used, a
similarly large variety of software tools are in use,
ranging from extremely generic to extremely specific.
Some people use calculators for preparing income tax
returns, some use spreadsheets, and some use
income-tax programs designed for a particular year.
Some companies do their accounting on calculators,
some use spreadsheets, some use general accounting
packages, some use accounting packages designed for
a particular type of business (e.g., restaurants), and
some use custom accounting software developed
exclusively for them. For preparing organization
charts, some people use painting programs, some use
structured drawing programs, some use general trec-
graph editors, and some use organization-chart
editors.

CREATiNG PRESENTATION SLIDES

Slide preparation is a task for which a wide variety of
computer-based tools are used, People prepare slides
using text editors, desktop publishing systems,
painting programs, drawing programs, spreadsheets,
statistical-analysis programs, business-graphics
programs, animation programs, and, recently,
presentation-making programs.

Programs such as Charisma, Persuasion, and
PowerPointl are highly task-specific programs

1 Trademarks: Charism% IvlkmOrafx; Persuasion, Aldus
Corporation; PowerPoin~ Microsoft

intended only for slidemaking. Slides comprising a
presentation are contained in one file. The format
and common content of slides are specitled once for

the presentation, rather than separately for each slide.
Typical slide editing actions such as removing or
adding a level of detail are explicitly supported.

Despite the existence of these programs, many people
use structured drawing programs such as MacDraw
for making presentation slides. With drawing
programs, users place manipulable graphical objects
on a canvas. Text and graphics, once placed, can be
edited, moved, or copied. However, drawing
programs’ degree of support for slidemaking is
limited. They offer, for example, no notion of a
presentation set of slides. Users can compensate by
putting slides into separate files and grouping them in
folders or directories, or by placing all the drawings
of a presentation together on one canvas, but such
workarounds are inconvenient and inefficient.
Drawing programs provide no support for
consistency of format, font, and layout in a
presentation. For example, to have the same margins
on every slide, users must painstakingly arrange
things that way, separately for each slide. If the
formatting requirements change, users must change

every slide. Standard slide content, such as logos,
headers, and footers, must be explicitly placed on
every slide, and changes require editing every slide,
Drawing programs provide little help in changing the
structure of a presentation’s content e.g., splitting
one sIide into two requires much explicit copying,
moving, and deleting of graphic objects. Drawing
programs have no provision for task-specitlc actions
such as attaching speaker’s notes to a slide, as is
possible with task-spec~lc siidemaking software.

In short, drawing programs lack the concepts of
slides, relations between slides, and a set of slides
comprising a presenrarion. Most of the other types of
software used for preparing slides atso lack support
for the process of creating and editing presentation
slides. Nonetheless, these programs are commonly
used for slidemaking. We will try to explain why as
we proceed.

A True Story

In the early 1980’s, atone company where the second
author worked, employees made presentation slides
using a text editor in conjunction with a slide-
formatting program that had a conventional text-

based user interface, To make a set of slides, users
created a text file containing the textuai slide content
and embedded formatting commands. The text file
was then “compiled” using the slide formatter,
producing a set of graphics files containing images of
the slide~. Users had many complaints about this
process. The formatting commands were hard to
learn; it was difficult to tell how a particular slide

393

!5?HumanFactorsinCompu[ingSys(ems CHI’94* “CelebratingMerdependence”

would look from ita source fd~ one had to “compite”
the entire set to check how a single slide looked.

When interactive painting and drawing programs
became available, users switched to them
immediately. The new programs were easier to learn
and provided much better feedback than the text
editor/formatter combination.

However, it soon became apparent that with the new
programs it was hard to obtain consistent formatting,
hard to manage sets of slides, and hard to edit slides.
After a short honeymoon, most users switched back
to the old programs, occasionally using the new ones
to enhance slides generated by the tried-and-true slide
formatter. At the time, this mass retreat to the old
tools was difficult to understand. Users had,
unaccountably, eschewed the advantages of direct
manipulation interfaces and WYSIWYG interaction
to return to an old-fashioned text-based command
language and tedious compile-and-debug cycle.

MOTIVATION FOR THE STUDY

As we began our research on end user programming
in the late 1980’s, we believed we understood the
reason why the users in our story had abandoned
direct manipulation software for making their slides:
it was not task-specific. The new programs were not
W@naking programs, but rather generic painting and
drawing programs. We reasoned that though the new
programs made some slidemaking tasks easier, they
made other, more crucial tasks harder. The aspecta of
slidemaking that the new tools made more difficult
were the deeper, more task-related aspects. While
users could, with effort and talent, make nicer
looking presentations with the new tools, they could
produce acceptable presentations much more quickly
with the old tools.

As we were to discover in the present study, this
analysis was too simple. The goal of this paper is to
explain what we have learned about task-specificity
and how it affects users’ preferences.

Our initial analysis led us to a set of beliefs, the gist
of which is captured in the previous story, that can
be stated as follows:

1. Software applications occupy a position along a
continuum, from completely generic to completely
task-specific.

2. Task-specific applications are preferable. It is
better to have a tool designed specifically for the
task one is performing. For example, for working
with schematic drawings, a schematic editor
would be preferable to a &awing editor.

3, People use generic applications when more task-
specific applications are either unavailable, cost

4.

too much, or require too much learning effort.
Users “get by” with generic tools because their
level of need does not justify the cost of obtaining
and learning to use task-specitlc tools.

People prefer task-specific tools when they
perform a task frequently. Their level of use
justifies the overhead of acquiring and learning to
use the tool.

Based on these beliefs, we (with other colleagues) set
about developing an Application Construction
Environment (ACE) designed to facilitate the
development of task-specific software applications
[5, 7]. One of our goals was to change the economics
of software development to make application
development easy and cheap enough so that it would
be cost-effective to develop highly task-specific
applications for small, specialized markets, A major
goal of ACE was to move the development process
closer to users, who best understand their goats and
tasks.

As we developed ACE, we were aware that we
should regard our beliefs as working assumptions to
be empirically tested. Over time, we began to have
reason to suspect that our initial assumptions weren’t
quite right. For example, a graphic artist friend who
had done a lot of work producing presentation slides
for others indicated that important parts of what we
believed were false. She claimed that experienced
professional slidemakers prefer generic drawing and
painting software for creating slides because it
doesn’t restrict them from doing what they want,
while dedicated slidemaking programs often impose
over-simplified views of the task and restrict the
results that can be produced. Based on this counter-
claim and on our own further analysis of the nature of
task-specflcity, we decided to conduct an empirical
study as a fwst step in evaluating and correcting our
assumptions. We chose the domain of slidemaking
because of the large variety of software tools used for
the task, the accessibility of users as informants, and,
not least, the challenge posed by our friend.

METHOD

We conducted an ethnographic study [2] to examine
how peo le create presentation slides. The

Yormants were sixteen people whose jobs involvedinf
creating, editing, and maintaining slide presentations.
All were college educated with several years
experience making slides. They worked for a variety

2 In an ethnographic study, participants are called
informants as their role is to actively inform the
investigator. This is in contrast to the use of the term
subjec#sfor experimental studies, where participants are
subjected to experimental conditions and oherved,

394

Boston,MassachusettsUSAs April24-28,1994 HumanFactorsinCompufingSystems
R

of companies, ranging from single-person
independent consultantships to large multinational

corporations in the San Francisco Bay area (most
outside of Silicon Valley). Six of the sixteen
informants worked in research or marketing, and
made slides for their own use in presentations, with
slidemaking being only one of many of their job
responsibilities. The other ten cart be considered
professional slidemakers; they had as a significant
(for some, dominant) part of their job the creation of
presentation slides for others, in a variety of business
areas: legal, advertising, research, and general

business.

We developed a set of questions (available upon
request from the fwst author) that we asked each
informant. Interesting conversational threads were
opportunistically pursued as they arose. The
interviews were audiotaped at the informant’s
workplace, often with a computer slidemaking system
ready-at-hand so that we could see the user’s work
on-line.

During the interviews, we began by explaining that

the purpose of the study was to learn what is involved
in making slide presentations, what sorts of software
people use for the task, and what people’s reasons are
for using or not using various software tools. We
asked the informant to describe the entire
slidemaking process, from start to finish. We
allowed the conversation to flow naturally rather than
strictly following the list of questions, but made sure
that answers to each of the predetermined questions
were captured on tape. We did not explain the
distinction between task-specific vs. generic software,
or our initial working assumptions. Interviews ranged
from 1-3 hours per informant.

We found that our informants were quite happy to
talk about their slidemaking software. Several
warned when making interview appointments that
their busy schedules could accommodate only a brief
interview, but once the interview was underway they
seemed willing to talk for as long as we would listen.
People have strong opinions, both positive and
negative, about the software they use.

The taped interviews were transcribed, resulting in
about 250 pages of text.

Date Analysis

We read the transcripts of each interview, in some
cases referring to the audiotape to clarify
transcription problems or informant intent. A
summary was made of each interview that included
the informant’s job role and involvement in
slidemaking, the context in which slides were being
produced, a summary of the slide-production process
as described by the informant, the software the

,,,,,

informant uses or has used for slidemaking, the
informant’s reasons for using it, software features
that the informant considered useful or a hindrance in
slidemaking, and informant comments (if any) that
seemed especially germane to the study.

RESULTS AND DISCUSSION

In a nutshell, we found that our original assumptions
were right in some respects and wrong in others, and
that the truth is more complex than either we or our
graphic artist friend understood. As we predicted,
people who infrequently make slides-that is, those
for whom slidemaking is peripheral to their main

job-typically use whatever general purpose software
they use for other work, e.g., word-processing. One
person, for example, used a combination of EMACS
and LaTeX to produce slides. In terms of learning
and installation time, and software purchase price, it
just doesn’t pay such users to bother with task-
specific slidemaking programs,

However, contrary to our assumptions, but in
agreement with the claims of our graphic artist friend,

we found some users who are professional
slidemakers-i,e,, those who spend most or all of
their time making slides—using generic software
such as drawing, painting, and word-processing
programs extensively, rather than sticking to task-
specific slidemaking programs. We found other
professional slidemakers using task-specific
slidemaking programs, in tune with our original
assumptions. In the following discussion, we focus
on the professional slidemakers in our study and
describe two of the factors affecting their differing
software choices. (A longer paper describing other
factors of interest is in preparation.)

Factors in Choosing Task-specific vs. Generic
Software

Factor #1: Presentation Quality

One factor that influences the choice of software for
professional slidemakers is desired presentation
quality. Some presentations are considered
“ordinary” while others are “fancy” or “very
important. ” Most presentations are relatively
mundane; others have millions of dollars riding on
the impression they make. We found that in cases
where slidemakers want to produce simple
presentations quickly, they use task-specific

slidemaking programs (though factors such as
familiarity and availability sometimes limit this
tendency). This is what we had predicted. But we
were surprised to learn that for fancy presentations,
which are usually planned and prepared long in
advance, slidemakers-generally highly skilled
graphic artists in this case-usuatly use generic

395

!5!?HumanFactorsinComputi8Systems CHI’94* “Celebratinghterdeoendenee”

drawing, painting, desktop publishing, or animation
software. Why?

Expert slidemakers use generic programs for fancy
presentations because the illustration and/or text
formatting capabilities of slidemaking programs are
insufficient and limiting from their point of view.
For example, one user said,

“I think the main point about why we use
MacDraw is because, yeah...Persuasion would be
better for a lot of word slide s...t!ut nobody’s
willing to simplify their graphs that ❑uch.
You know? It’s like they would have to...work at
such a simple level to make a presentation,
that-the [clients] can’t cut down on the
complexity of their slides, to be able to fit
in with the limitations of a program like
that. ”

What this tells us then, is that when we speak of
“task-specificity” we must be precise about which
aspects of a task we are talking about. For
slidemaking, is it illustration or text formatting or
managing a set of slides in terms of common formats
and file manipulation? To fully understand which
aspects of the task are most important in predicting
tool use we must backup one level further, and look
at the goal behind tti task. The goal of producing a
fancy presentation leads to a different set of choices
than the goal of producing an ordinary presentation.
Each kind of presentation entails illustration, text
formatting, and slide organization subtasks, but the
differing goals mandate optimizing different aspects
of the overall process,

The professional slidemakers doing fancy
presentations provide a mirror image example to our
story in which users abandoned generic illustration
software in favor of their old dedicated slide
formatter. The users in that story did not want to
optimize illustration; for them the goal was to get out
decent slides quickly, rather than to produce
beautifully illustrated slides.

Our original assumption that software should always
be as “task-specific” as possible thus comes into
question when we consider the variability in
something seemingly as simple as slidemaking. In
terms of software choice, “slidcmaking” has fractured
into “making ordinary presentations” vs. “making
fancy presentations,” What we see here is that, any
goal may involve tk? excution of subtasks that are
common to many goals (e.g., subtasks of drawing,
illustration) as well as subtasks that are more
nurrowly conceived (e.g., containing and managing a
set of slides). When we consider the differing
software choices dictated by ordinary vs. fancy
presentations, what at f~st appeared to be “a task—
i.e., slidemaking—has proven not to be a
conceptually clean cut at the problem. It is more
helpful to begin the analysis with the user’s goal,

and then to consider the subtasks necessary to fulfill
the goal. The subtasks involved in slidemaking vary
crucially depending on the quality and turnaround
time desired for a presentation, Different tools are
entailed by the differing demands of a given
presentation.

Perhaps, though, we have erred in framing
“slidemaking” as the task, instead of declaring the
task to be “making a fancy presentation” or “making
an ordhtary presentation.” Such an analysis seems
incorrect to us in that so many different factors may
be relevant to a given situation; with slidemaking, for
example, in predicting software choice we have also
to consider the frequency of use of a program, as we
discussed earlier. Many variable factors can affect
software choice, Without a clear sense of the user’s
goal and some context-e.g., a user who infrequently
makes slide presentations wants to make an ordinary
presentation quickly-it is not meaningful to speak of
“a task” as an isolated disembodied entity,

What a preliminary analysis of our data might seem
to suggest is that slidemaking software should
provide high quality illustration/text formatting
capabilities and slide manipulation and format
capabilities. This would certainly seem best if
software cost, in terms of both development time for
the vendor and dollar cost to the user, were not at
issue. But cost is an issue, which may explain why
programs tend to optimize some but not all subtasks
relevant to the achievement of users’ goals.3

How then, can we support users’ varying goals and
the differing contexts of software use? One answer is
suggested by the practice of some of the professional
slidemakers in our study who create fancy
presentations. To mitigate the limitations of the
different software programs that can be used to make
fancy presentations, they use both generic and
dedicated slidemaking software: for example,
illustrations are produced with drawing tools, and
then the files are exported to a slidemaking program
such as Persuasion which is used to contain and
organize them. (Slidemaking programs that do not
easily accept text and graphics files from other
programs, are, needless to say, not popular with these

slidemakers.)

Thus we see slidemakers devising a strategy of the
use of multiple, interoperable services to achieve
their goals. This example suggests that perhaps we
should be evaluating whether it is preferable to

3 Many programs seem to provide good support for one
subtask while being surprising] y deficient in others. For
example, Instant Update (ON Technology, Inc.) is very
good at update management but has an unimpressive text
editor. For collaborative writing, both are critical.

396

Boston,MassachusettsUSAo April24-28,1994 HumanFactorsinComputiigSystemsE
design task-specific programs that attempt to cover
every aspect of “a task,” or whether we should be re-
thinking the whole issue, considering a software
architecture that provides modular, integrated
services that users can pick and choose as needed,
services that play together easily.

Factor #2: Support for Teamwork

Another factor in software choice for slidemaking
that we had not even considered in our original
working assumptions is the degree of teamwork
supported or allowed by the software. Most
slidemaking programs are designed to support an
individurd who produces slides alone. However, in
our study we found that in many settings, people
work in teams to produce and maintain slides.
Existing slidernaking programs make it difficult to do
this. According to one informarm

“I looked at Persuasion, because everybody was
saying that Persuasion was great. And I think
a bunch of the secretaries...used it as well.
And I think the program that are that specific
are very well designed for a person who is
going to sit down and think up a presentation
and create the presentation right there. But
the way we work is that...there are dozens of
peaple out there thinking up things, and we
integrate presentations for all of then. And
so for us to be able to distribute that work

amongst enough peep 1e to get i t done, we need
to break i t down into sml ler units... For each
job here, if we used Persuasion, each job...would
have its own..file with all of its slides in it.
But slides get used from one job to another..And
so I think because of that, [Persuasion]
wouldn ‘t work, The outlining...you know, is
wonderful, But [Persuasion is] really designed
for a different type of work atmosphere. It’s
designed for the guy who’s sitting down and
going to do his own presentation” (emphasis
added).

Though more generic tools don’t provide real support
for team production, they at least don’t interfere with
it in the sense that they impose little structure on the
process at all. While task-specitlc programs certainly
could, in principle, support teamwork, today’s task-
specific slidemaking systems do not encourage
sharing of slides and files; thus we find another
reason why some of our informants chose not to use
task-specific programs.

The need to support teamwork argues for preferring a
set of modular interoperable services over task-
specitlc systems. In many settings, because “slides
get used from one job to another,” as our informant
noted, interoperability is again a key feature needed
by users. An architecture supporting the interplay of
small modular services to be applied to the slides for
varied purposes by different users would enable
collaborative development distributed across a set of
cooperating users.

CONCLUSIONS

Before our study, we assumed that task-specific
software is generally a good thing. The primary
hindrance to its use, we thought, was acquisition and
learning costs: how much does it cost to get the
software, and how much of an incremental learning
“hump” does using the tool require? Companies

don’ t like to spend money. Users avoid learning new
things. Thus, tools users already have and know have
a strong advantage.

But we found that cost, in terms of money and
learning time, isn’ t the whole story (see [9] on
identifying costs), Several additional criteria are
important in deciding which tools will be used to
make presentations:

9

●

●

Powe~ Can the required slides be produced with
the task-specific tool? For example, if beautiful
illustrations are needed, can they be created?

Support for teamwork: Does the tool support
people working together on a presentation, if that
is how presentations are produced at the worksite
in question? Today’s slidemaking tools assume a
single user working alone, but in fact, many
presentations are created by teams, with different
people contributing different parts.

Interoperability: Can the tool easily take input
from other tools such as might be needed; e.g., can
a drawing made with one program be put into a
slide or presentation made using another?
Programs that provide good interoperability are
preferred.

We went into our study thinking that software
applications vary along a continuum of task-
speciticity and found that it isn’t that simple. There
are several aspecta to task-specificity, including a
user’s gord in performing a task and the necessary
subtasks that enable the fulfillment of the goal. What
we call “task-specific” software programs today
really only support some subtasks relevant to a given
goal. Users’ gords vary widely enough that it is
difficult to create the many individual off-the-shelf
programs that would be necessary to support these
goals. As one user observed,

“Persuasion and Power Point are sort of
integrated programs and they’ re good for
scmeone who isn’t a power word processor, who
isn!t a power graphic artist, where they
basically wont to type in their own headers and
dot points, and it’s great for that...sut if you
hove to go beyond that where you’ re...doing real
serious word processing, or doing some real
elaborate graphics, it just doesn’t cut it
ei the r woy...lhere hasn’ t been any so ftwore that
does everything WI I “ (emphasis added).

397

Q——HumanFactorsinComputingSystems CHI’940 “CelebmfillgInterdependence”

We found that professional slidemakers creating
fancy presentations prefer using collections of
interoperable tools. Their usage pattern suggests a
modular set of interoperable software services as an
alternative to individual highly task-specific
programs, which often fall short on some crucial
subtask necessary for getting a job done. The subtask
of outlining, for example, mentioned in a previous
quotation, is surely a service useful for many kinds
of work, Outlining could be selected from a set of
services and applied to the task of slidemaking when
appropriate,

Given a set of interoperable services, users might
come to bundle individual services together into
personalized packets to capture regularities in their
daily work, depending on the kinds of goals they
pursued. Local developers (“office gurus”) might
also be enlisted to bundle services for a group of
users, or help them do it (see [7]). They could
develop shareable templates as happens in many
domains [7] and users themselves could share
individually developed templates.

In terms of documentation, instead of a single
program documented by a fat manual with a great
deal of daunting, irrelevant detail, users would work
with “recipe books” suggesting sets of ingredients
that could be combined to get started on a task.
Heavily annotated examples and rich indexes would
also support the learning task.4 Users would not be
faced with trying to use a software program with a
non-optimal bundle of services (as many of the
slidemaking systems have, as we have tried to
illustrate); rather they would construct their own
environments from small, modular, interoperable
services. This is essentially what we observed the
professional slidemakers doing, and without benefit

of programs explicitly designed to be used together.

Of course, the generality of the findings reported here
should be validated through comparable studies in
other task domains. We believe the present study
argues strongly for in-depth ethnographic research on
how users work our original assumptions, which we
felt to be well-reasoned, were actuatly rather shallow
and wrong in important ways, A focused look at the
work of real users in a simple domain of application
development led us to rethink our key assumptions
and to consi&r an alternative way of supporting end
user application development.

4 Examples and indexes would be useful in any case, but
since we are trying to suggest a new paradigm here, we’d
like to underscore the importance, from the beginning, of
taking the time to proper] y document software in ways not
typically done today.

ACKNOWLEDGEMENTS: The research described in
this paper was conducted while the authors were
employed at Hewlett-Packard Labs, Palo Alto, CA.
The authors thank Michelle Gantt, the student intern
and graphic artist who served as the interviewer for
the study and also-by questioning our initial
assumption about who uses task-specific vs. generic
software-as the primary catalyst for our conducting
it. Many thanks to Jim Miller, Vicki O’Day, Dan
Russell, and Craig Zarmer for helpful comments on
earlier drafts of this paper. Last but not least, thanks
to our informants for taking time out of their busy
schedules to educate us about their work practices.

REFERENCES

1. Casner, S. (1991). A task-analytic approach to the
automated design of graphic presentations. ACM
Transactions on Graphics 10:11 1–151.

2. Glaser, B. and Strauss, A. (1%7). lle Discovery of
Grounded Theo~, New York: Aldine Publishing.

3. Gould, J., Boies, S. and Lewis, C. (1991). Making
usable, useful, productivity-enhancing computer
applications. CACM 34:75-85.

4. Hutchins, E., Hollan, J. and Norman, D. (1986).
Direct manipulation interfaces. In D. Norman and S.
Draper, eds,, User Centered System Design.
Hillsdale, NJ: IMbaum Publishers,

5, Johnson, J., Nardi, B,, Zarmer, C. and Miller, J.
(1993). ACE: building interactive graphical
applications. CACM 3640-55.

6. Lewis, C. and Olson, G. (1987). Can principles of
cognition lower the barriers to programming? In
Empirical Studies of Programmers: Second
Work.dwp. Nonvood, NJ: Ablex. Pp. 248-263.

7. Nardi, B. (1993). A Small Matter of
Programming: Perspectives on End User
Computing. Cambridge, Mass: MIT Press,

8. Olsen, D., McNeill, T. and Michell, D. (1992).
Workspaces: An architecture for editing collections
of objects. Proceedings CHI’92. Monterey, CA. 3-7
May. Pp. 267–272.

9. Russell, D., Stefik, M., Pirolli, P. and Card, S.
(1993). The cost structure of sensemaking,
Proceedings IN TERCHI’93. 24-29 April.
Amsterdam, pp. 269-276.

10. Vlissides, J. and Linton, M. (1990). Unidraw: A
framework for building domain-specific graphical
editors. ACM Transactions on Information Systems
8:237-268,

398

