
96 March 1998/Vol. 41, No. 3 COMMUNICATIONS OF THE ACM

Bonnie A. Nardi, James R. Miller,

and David J. Wright

We began our research on intelli-
gent agents with the same
romantic imagery that has
always fueled interest in agents:
Robbie the Robot from “For-

bidden Planet,” HAL from “2001: A Space
Odyssey,” the Star Trek computers (including Data).
The images they conveyed of intelligent machines
and the ways people would interact with them—by
talking as if to an old friend who knows you so well
they could finish your sentences for you—were so
attractive that a whole generation viewed them as
proven technology. They also became the models for
the intelligent interface community that emerged
out of artificial intelligence research in the 1980s,
even for early work on AI itself.

But building anything approximating real intelli-
gence into a computer has proved to be a painfully
difficult task, and the powers of Robbie and HAL
have remained beyond our grasp. We need to step
back a bit, think carefully about what people and
computers are each good at, understand how they
can complement each other, and where we as system

designers can do some good.
Shneiderman [12] observed that claims about intel-

ligent software agents are vague, dreamy, and unreal-
ized. As Apple Computer researchers, we started
from a simple but focused approach to agents: That
they should have the ability to infer appropriate
high-level goals from user actions and requests and
take action to achieve these goals. Further, based on
a study of reference librarians as exemplary human
agents [9], we wanted to build a system in which the
user would not have to state goals explicitly and in
detail. We learned from librarians that a large part of
their value to clients is in working with imprecise
requests. Beyond this concern, our general design
strategy was to keep the most basic user question in
front of us at all times: Will this software do some-
thing useful for users in an intelligent way that
makes them more productive? The system we
describe here—called Apple Data Detectors—meets
our criteria of being unobtrusive, being able to infer
user needs, and doing useful work. Apple Data
Detectors shipped as a product in 1997.

Earlier work on intelligent agents was multi-

Extracting semantics from everyday documents,
intelligent agents, illustrated by Apple Data Detectors,
infer high-level goals from simple user actions.

Collaborative,
Programmable
Intelligent Agents

COMMUNICATIONS OF THE ACM March 1998/Vol. 41, No. 3 97

faceted, to the point where it is difficult to find a con-
sensus among researchers on exactly what constitutes
an “agent” or even “intelligence.” However, in nearly
all cases, systems described as “agent-based” rely on
some explicitly represented knowledge about rele-
vant aspects of the world—the objects or concepts
being addressed by the software, the tasks relevant to
the user, and the user’s own knowledge about the

world. Researchers have used machine learning tech-
niques to track user actions and construct models of
user preferences [7], create explicit models of user
knowledge and skill levels in an attempt to antici-
pate user actions, misconceptions, and information
needs [2], and implement planning systems to leap
from a user’s stated intention to the specific actions
required to achieve that intention [3]. The locality of

From: David J. Wright, Internet: dwright@taurus.apple.com Date: 12/5/96 11:22:08 AM

Subject:
Sent:
Received:
From:
To:

REMINDER:

This Friday's ARL Seminar will take place at 11am (note later start time
than normal). The speaker will be Dr. B. Rubble of the Bedrock Institute,
on the topic of simulating complex adaptive systems. An abstract for the
talk is below.

Please feel free to invite anyone to this talk who is not on the mailing
list.

--

ARL Seminar #52: Simulated Evolution, Friday, 12/6, 11am
12/3/96 10:01 PM
12/4/86 10:42 AM
Steven L. Goldberg, brat@research.apple.com
arl@taurus.apple.com

Delete File Print Forward Reply

In Box Item: ARL Seminar #52

Apple Labs Seminar #52

ABSTRACT
A growing number of computer
systems,in the hope that such simulations w
as we had thought. More recently, however,
resources for such work can be obtained from
untapped source: the generation of extremely large numbers of graduate
students and their subsequent application to the creation of alternate

“Simulating Complex Adaptive Systems -- What can we really learn?”

Dr. B. Rubble
Bedrock Inst.
Brub@bedrock.edu

Friday, December 6, 1996
11:00 a.m. – 12:00 noon

Singapore Rm. 1st Floor R&D Building #1

Place on electronic calender

brub@bedrock.edu
Friday,December 6, 1996 11:00 a.m...

Mail to secretary for scheduling

Done

Figure 1. Sample invocation of Apple Data Detectors. The user has selected a portion of an email message describing an
upcoming seminar. Two patterns are found: an email address (brub@bedrock.edu) and the announcement of the meeting (the
sequence of date and time information starting Friday, Dec. 6, 1996). These patterns are presented in the pop-up menu; by
pointing at the date information in the menu; a second pop-up menu offers a choice of actions: place an entry for the meeting
on the user’s electronic calendar or mail the selection to the user’s secretary. The user can select one, thereby running a small
application, or move the cursor off the menu, eliminating the pop-up menu and canceling any actions.

agents also varies across different agent-based sys-
tems; some act only within one’s own machine, find
others autonomously crawl the Web, searching for
interesting content [4]. We tried to find a middle
ground by using explicit representations of user-rel-
evant information as a means of identifying actions
users might wish to take but to leave the choice of
these actions to users.

Working with Information Inside
User Documents
Our first step was to find a user problem that needed
solving in which intelligent agents would add value.
In an investigation of how people file information on
their computer desktops [1], we discovered that a
common user complaint is that they cannot easily
take action on the structured information found in
everyday documents (structured information being
data-recognizable by a grammar). Ordinary docu-

ments are full of such structured information:
phone numbers, fax numbers, street
addresses, email addresses, email signatures,
abstracts, tables of contents, lists of refer-
ences, tables, figures, captions, meeting
announcements, Web addresses, and more. In
addition, there are countless domain-specific
structures, such as ISBN numbers, stock
symbols, chemical structures, and mathemat-
ical equations. These structures are not only
relevant to users, but because of their struc-
ture, are also recognizable by parsing tech-

nologies. Once identified, the structure’s type can be
used to identify appropriate actions that might be
carried out, like placing a meeting on a calendar,
adding an address to an address book, dialing a
phone number, opening a URL, finding the current
price of a stock, filing an ISBN number, and com-
piling a list of abstracts.

Apple Data Detectors
supports a wide range of
uses. Think of all the
structured information in
the documents you work
with; in addition to those
mentioned already, add

bibliography items, forms (such as travel expense
reports and non-disclosure agreements), executive
summaries, and most important, such domain-spe-
cific kinds of data as legal boilerplate, customer
orders, and library search requests. Specific detectors
can be created for each of these types of information.

User interface. To use Apple Data Detectors, users
select a region of a document with some information
of interest. Pressing a modifier key and the mouse
button instructs the system to analyze the data
within the selected region and to find all structures
for which it has grammars. It then offers appropriate
actions for each structure (see Figure 1). For exam-
ple, for users reading email who come across a semi-
nar announcement they would like to put on a
calendar, Apple Data Detectors parses the relevant
information within the selected text, including the
meeting’s place, time, and date and puts this data
into the appropriate fields on the calendar.

A user can select a whole document or part of a
document without having to make a careful selec-
tion; the grammars find any embedded structures
they know about within the selection and offer an
appropriate set of actions from which to choose.

The use of anthropomorphism in an agent interface
[12] was incongruent with our goal of unobtrusive-
ness. We designed Apple Data Detectors to be invis-

98 March 1998/Vol. 41, No. 3 COMMUNICATIONS OF THE ACM

User Application Presentation
User Interface

Apple Data
Detectors

Detectors
Database

Actions
Folder

HTTP = (Http Protocol, Host, Port?, Path?, {Http Location, Http Search} ?)
Http Protocol = {“http://”, “https://”}
Port = (“:”, Port Number)
Port Number = Digits

Figure 2. The Apple Data Detectors architecture, which
separates the application in which the information is found,
the presentation of the analysis and possible actions, and the
analysis of the information itself. This separation means that
Apple Data Detectors can be invoked in any application and
that the user interface can be implemented, refined, and
evolved separately from the analysis module.

Figure 3. A grammar to define a URL. The language
implements a context-free grammar in which sequences of
terms are matched against the input stream. References to
other grammars are permitted, as are optional and repeated
terms. Here, the HTTP grammar finds a match when it finds
an HTTP protocol, a host, a port (optional), a path (optional),
and either an HTTP location indicator or an HTTP search
command and arguments.

COMMUNICATIONS OF THE ACM March 1998/Vol. 41, No. 3 99

ible until needed (a butler only when you want a
butler). Thus there is nothing like a “swivelling eye-
ball” watching the user as in the Selection Recogni-
tion Agent [10] or a character as in Microsoft’s Bob.
Apple Data Detectors acts behind the scenes, emerg-
ing only when summoned.

Architecture and implementation. Apple Data
Detectors is an open extensible system allowing the

recognition and parsing of
complex structures. Its
recognition technology is a
hybrid system that uses
Earley’s algorithm and
deterministic finite
automata. The algorithms
permit recognition of not
only simple structures,
such as predefined strings
and atomic patterns like
URLs and email addresses,
but complex composite
structures, such as meeting
announcements composed
of smaller more atomic
structures, like date, time,
and place. The idea of
detecting structures is not
new [11], but our work is
unique in providing an
open system for creating
complex new structures
and actions. It is not diffi-
cult to hard-code a recog-
nizer for an atomic
structure, such as a URL,
but substantial work is
still required to craft an
architecture that opens up

the process of creating complex structures.
To make Apple Data Detectors work, grammars

(we call them “detectors”) and action scripts have to
be written (see Figures 2–4). Today this task is for
programmers only, though it’s made as easy as possi-
ble through the use of a special-purpose editor and
AppleScript. We are committed to providing facili-
ties for end users to create their own detectors and
actions and have begun work in this area. While
Apple and third-party developers will provide many
detectors and actions, it is clear that enabling end
users to write their own detectors and actions will
make Apple Data Detectors much more powerful
and useful by providing domain-specific program-
ming capabilities appropriate for the specific needs
of specific users [8].

The system parses the selected text according to the
grammars associated with them. For each structure
found by a detector, a data record is produced
describing the structure. This record can then be
passed to an action script for execution, in much the
same way a subroutine is invoked with a specific set
of parameters. These parameters depend, of course,
on the kind of structure found by a given detector.

--addressLetterTo: Given a phone number, find the person with that phone number and
--address a letter to him/her.

on addressLetterTo(phoneNumber)

--Open Now Contact and find a person with the indicated phone number
tell application “Now Contact 3.5”

--find the person with the supplied e-mail address
set thePerson to the first person whose (work phone is phoneNumber)

--get the address information for this person
set firstAndLastName to (the first name of thePerson) & “ ”
 & (the last name of thePerson)
set theAddress to firstAndLastName & return & (the company of
thePerson)
 & return & (the work address of thePerson) & return
 & (the work city of thePerson) & “,” & (the work state of
the Person)
 & “ ” & (the work zip of thePerson) & return & return

end tell

--Open WordPerfect and write the address information into a new document
tell application “Corel WordPerfect”

--open an empty piece of WordPerfect stationary
open (path to system folder as string) & “DD template”

--get today's date
set theDate to (the current date as string) & return & return

--get the salutation: something like “Dear John,”
set theHeader to “Dear” & the first word of firstAndLastName & “, ”
 & return & return

--write all of this as a new paragraph at the beginning of the document
make paragraph at the begining of the document with data
 theDate & theAddress & theHeader

end tell
end addressLetterTo

Figure 4. An action script, demonstrating the generality of
Apple Data Detectors’ use of a scripting language and external
applications as information repositories and as end-user tools.
This script can be activated when the system detects a
telephone number. It then generates word processor
letterhead addressed to the person possessing that number,
with appropriate date and salutation information. This script
uses two applications: First, a “personal information manager”
(Now Contact 3.5) is opened and used as a database. Then the
script opens an empty word processor document (via Corel
WordPerfect) and writes the date, name, address, and
salutation into it, leaving the user ready to write the letter.

Detectors for strings and atomic patterns typically
create a record containing only the structure that was
found—such as the name of a conference room or an
email address. Detectors for complex patterns, such
as a meeting announcement, produce records con-
taining each of the components playing a part in the
recognition of the pattern. Note that a detector can
have an action associated with it and also play a part
in a more complex detector. For example, a conference
room detector could have a “Show on map” location
indicating where that room is located and also play a
part in defining the more complex meeting detector.

End users can also specify simple detectors in the
form of lists of strings, such as lists of conference
rooms, group members, and customers (see Figure
5). These user-specified detectors can then be used in
other detectors, increasing the personalization of the
system. For example, the meeting detector might
refer to the conference room detector, which could be
written as a list of strings by an end user or by a local
systems administrator. The meeting detector could
then be used in a number of organizations without

requiring the meeting detector developer know the
name of every conference room in every organization
that might use it.

The Apple Data Detectors’ architecture separates
detectors and actions so that more than one action can
exist for any detector (without having to duplicate
the detector for each action). Hence, a detector writ-
ten by one person to support one task can be used by
another detector for another task. Detectors are thus
reusable and easily shared.

Detectors also should be shareable for the sake of
compatibility. The “place meeting on electronic cal-
endar” action might expect the fields “StartDate,”
“StartTime,” and “EndTime” from the “Meeting”
detector. If a new definition of “Meeting” is installed
that does not export these fields, the actions cur-
rently installed would not work properly. We added
the notion of namespaces to detector definition, so
these definitions can be merged and extended by
placing them in the same namespace or kept separate
by placing them in different namespaces. Authors of
actions must then observe these namespaces, so their

100 March 1998/Vol. 41, No. 3 COMMUNICATIONS OF THE ACM

Customizable Detectors

Cancel SaveAlphabetize

.com

.edu

.gov

.org

.net

.COM

.EDU

.GOV

.ORG

.NET

.Com

.Edu

These detectors can be customized by adding specific information about your
environment. Other detectors will use this information to increase the
amount of data that Apple Data Detectors will find in your text selections.

To customize a detector, click inside the list and edit the text. Each detectable
item must be on a separate line.

Detector: Apple Host Domain

Figure 5. User
customization
window in which
users can inform
Apple Data
Detectors about
information
relevant to their
environments.

actions are assured of receiving the arguments they
are intended to receive.

Apple Data Detectors inserts a new kind of pro-
gramming capability into the middle of user interac-
tion. Unlike conventional scripting, Apple Data
Detectors works hand-in-glove with the data in
users’ applications and interactively with users as
they work. The job of supplying data to the parame-
ters of the scripts is taken care of by users simply
making a selection containing the data—without
having to leave the application, type anything,
understand order of parameters, or know any other
low-level programming details needed in conven-
tional scripting.

Unlike systems based on predefined
recognizer/action pairs, such as the Selection Recog-
nition Agent [10], the Apple Data Detectors’ script-
ing ability allows any set of arbitrary actions to be
executed when the user selects a particular action (see
Figure 3). Scripting is not limited to the parameters
of a command line interface to the application; it can
do anything that can be expressed in the scripting
language, including manipulation of data structures
inside the application, if the application’s scripting
model makes that possible.

Because Apple Data Detectors is a general-purpose
programmable engine (not merely a collection of spe-
cific detectors and actions), it has the potential to
transform the way users work. Without the need to
modify data by changing it into objects, database-
readable data, or any other complex format, a power-
ful new capability is introduced into the system. Any
application can provide information to Apple Data
Detectors, and any scriptable application can
respond to Apple Data Detector actions without hav-
ing to change in any way. The ability to work within
existing documents provides immediate user value
and leverages the data the user is already using.
Structures in other formats, such as objects (in the
object-oriented sense), are amenable to the system’s
parsing and scripting capabilities, representing a
flexible technology that can evolve and grow with
changes in data formats.

Apple Data Detectors assumes a world of hetero-
geneous data (in the user’s machine) that comes from
different applications in different file formats. For
example, it makes sense to put an address in an
address book, whether the address is from a message
sent in any of several mail programs, appears in a
downloaded document, or is in another address
book maintained by the user. Apple Data Detectors
is a pervasive technology, giving users access to
actions appropriate for data in an entire set of
documents.

Collaborative vs. Autonomous Agents
The system’s current user interface allows users to
select data and actions, resulting in a collaborative
agent. The user participates by signaling as struc-
tures of interest occur in a document and by verify-
ing that an action is appropriate by selecting it from
the menu, as shown in Figure 1. Apple Data Detec-
tors participates by recognizing structures, offering
appropriate actions, sending data to the target appli-
cation, opening the target application, and perform-
ing any other actions specified in the action scripts.

Apple Data Detectors therefore has the ability to
infer appropriate high-level goals from user actions
and requests and take appropriate action to achieve
these goals. When users invoke it on a region of text
in a document, they are saying, in effect, “Find the
important stuff in here and help me do reasonable
things to it.” Users can be imprecise, throwing the
system a broad hint that there is something of inter-
est, then let the system use its knowledge to do the
right thing. Users work on their tasks in terms of
high-level goals, such as “put this address in my
address book”—not by opening folders, clicking on
icons, cutting, and pasting. Direct manipulation is a
wasteful, frustrating way for users to interact with
machines capable of showing more intelligence.

Having to choose a particular action is actually an
artifact of Apple Data Detectors’ ability to find more
than one structure in a selection and the need to offer
more than one action for the same structure (such as
“open URL” and “place URL in hot list”). But mul-
tiple structures and actions are of benefit to users in
terms of their being able to choose the structure to
be manipulated and to choose the action to be
employed. Users therefore remain in control of their
work with the computer at all times.

Developer and user interest. The response of users
and application developers to Apple Data Detectors
has been extremely positive. The code required to
implement detectors and actions is small enough
that developers are eager to link their applications to
the technology. Users see it as a valuable way to rid
themselves of annoyingly detailed interaction. At the
same time, users and developers are surprising us by
finding new uses for Apple Data Detectors. For
example, one customer considered how scientific
analyses might be started on a Macintosh using
Apple Data Detectors to find structures of interest,
with subsequent stages of analysis carried out by
opening a network connection and passing the
detected information to a specialized application
running on a Unix workstation. This and other
examples emphasize the importance of the scripting

COMMUNICATIONS OF THE ACM March 1998/Vol. 41, No. 3 101

layer in Apple Data Detectors and the need to do
more than simply launch applications in response to
the detection of a data type.

We also see evidence that end users with varying
degrees of programming skill are extending actions
much as we had expected. One user—a skilled pro-
grammer—used the basic detectors and actions that
ship with the product as the basis for a new detec-
tor/action pair for a personally relevant task. He
wanted to look up software bug reports in a database
based on the ID numbers of the reports commonly
found in other bug reports, email messages, and
other program management documents. He distrib-
uted this detector/action throughout his work
group, and a colleague—a marketing manager with
much less programming experience than the original
programmer—was able to adapt the action so the
detector could run on his laptop computer (where
his email and other documents reside) and display
the bug reports on his desktop machine (where his
program management tools reside). This extension
required changes to only a few lines of code in the
action, something well within his technical ability.
Such end-user tailorability is an excellent example of
Apple Data Detectors’ evolution. We expect to see
more of these innovations—starting with the tech-
nology originator (that is, Apple) defining highly
general detectors and actions, to detectors appropri-
ate to smaller work groups or communities, to mod-
ifications to those detectors to make them support
individual users’ specific needs. It is important to
note that the ease of programming offered by both
the detector language and the scripting language
used to create new actions (AppleScript) makes this
evolution possible. For example, the programmer
who wrote the initial bug-tracking action probably
could have written his code in C++ or some other
production programming language, but it is doubt-
ful that the marketing manager could have made his
personal refinements in C++.

Commercialization
Apple Data Detectors started out as a project in the
Apple Advanced Technology Group, which designed
and developed the initial prototypes. As a research
group, ATG had no facilities for shipping products;
hence commercialization of the idea was possible
only by working with the product development side
of Apple. It is worth reflecting on how this hap-
pened, as some interesting perspectives on technol-
ogy transfer follow.

First, Apple Data Detectors offered a crisp state-
ment of value to the product group. The system’s
capabilities were easy to convey and its value was

easy to demonstrate, even with a limited demo sys-
tem. The engineering required to implement the
system was also easy to estimate, partly based on the
properties of early demo systems and partly on the
system’s overall architecture. There was nothing in
Apple Data Detectors that would require unrealisti-
cally large amounts of memory or processing time,
nor would the system impose unrealistic demands on
Apple’s application developer community. Hence,
Apple Data Detectors was the right “grain size” for
successful technology transfer—large enough that
significant value would extend to Apple customers,
small enough that the implications on the operating
system were limited and manageable. As a result,
the question about Apple Data Detectors was not
whether there was a viable product but what form
the product would take.

We were fortunate that the technology-transfer
question took this form from the beginning, so we
were able to start working with the Apple product
groups on the technology’s product implications
early in the technology’s development. The transi-
tion from technology to product is a long one, and
exploring possibilities that ultimately turn out to be
blind alleys is inevitable. In our case, the result was
something of a dance between research and product
groups. We all explored, from our own perspectives,
opportunities for the technology; each group revised
its understanding and implementation of the tech-
nology as these explorations advanced. From the per-
spective of the research group, we began to see how
the product group viewed Apple Data Detectors,
and we adapted our development in response, incor-
porating good ideas from the other side and pushing
back when misinterpretations of our work occurred.
Meanwhile, all the groups were working from the
assumption that some sort of product would emerge.
The product group agreed that ATG should have
free rein in defining what the technology would be
and the product groups could look for opportunities
for the technology while not actively investing engi-
neering resources in its development, knowing our
work would ultimately become available to them.
Therefore we were not in intellectual competition
with our own product group. Overall, the process
that emerged meant we could avoid the not-
invented-here problem that often plagues technol-
ogy-transfer activities.

The major challenges in our effort to create a com-
mercial product lay in the changes to the system
architecture and the user experience Apple Data
Detectors would impose on the Macintosh. As the
long-term owner of both aspects of Apple’s work, the
product group needed to ensure the smooth integra-

102 March 1998/Vol. 41, No. 3 COMMUNICATIONS OF THE ACM

tion of this new technology into the existing system,
and it was clear from the beginning that our success
in moving Apple Data Detectors into product form
depended on our doing this well.

Our early contact with the product group again
served us well. During the system’s development, we
experimented with various user interfaces to its basic
technology, an effort that paid off in a number of
ways. The different interfaces followed different
assumptions about various aspects of the system,
such as the interface techniques themselves, the
demand the techniques would place on the underly-
ing operating system, and the
demand imposed on develop-
ers who wanted to adapt
Apple Data Detectors to their
own uses. It was important
for us to understand such
trade-offs, so we could advise
the product group on the
technology’s possibilities.

Agents of Alienation?
Jaron Lanier, a developer of
virtual reality technologies,
wrote a thought-provoking
diatribe against intelligent
agents [6], asserting that the
very idea of intelligent agents
is “both wrong and evil.” He
argued that while few intelli-
gent software agents have
shipped (Bob and the Apple
Newton being two of this
rare breed), the idea of agents
is still harmful, leading to alienation. Lanier finds
the idea that the computer has its own intelligence
threatening and thinks it undermines human values.

Lanier further argued that agents have to force users
to “change yourself to make the agent look smart”
and that users thereby “diminish” themselves. But
we do not see that users in any way diminish them-
selves with agents, such as Apple Data Detectors.
Users are simply interacting with a program that
recognizes data it has been instructed to recognize,
taking actions it has been instructed to take. There is
less effort needed to make these everyday actions
happen, just as when you tell a secretary, “Fax this to
Sally right away.” You don’t have to say what you
mean by “right away”, “this”, and “Sally” or specify
Sally’s fax number or instruct the secretary to fill out
the top sheet of the fax. It’s all understood.

We can imagine users of Apple Data Detectors
changing their behavior to take advantage of the sys-

tem’s abilities without evil consequences. It is easier to
write grammars when the data are regular and struc-
tured, and parsing is easier and faster when the data
are regular. For example, it may be that in some envi-
ronments, groups of users establish form-like tem-
plates for announcing meetings, so Apple Data
Detectors can be used with great speed and accuracy.
This activity doesn’t compromise or diminish anyone’s
humanity; it is a natural co-evolution of tools and peo-
ple. Users themselves change their own behavior if
they perceive sufficient value in doing so. There is
nothing inherently coercive in agent software.

Our prediction about
intelligent software agents is
that the best of them will be
malleable, programmable
tools that empower, rather
than diminish, users, giving
them control over tasks nec-
essary for everyday life. Col-
laborative, programmable
agents enable users to get
more value out of the data
they already use for tasks
they already do with less
effort and at a higher level of
goal specification. Such
agents will also provide new
functions as people discover
new uses for them. Apple
Data Detectors is designed
to support an evolutionary
process in which users shape
their own tools to the great-
est extent possible. Lanier

asked an important question: “How does [informa-
tion technology] affect our definition of what a per-
son is?” Technologies like Apple Data Detectors
assume people shape their everyday tools, controlling
their own environments through these tools.

Future Directions
Apple Data Detectors is a first step toward extract-
ing semantics from everyday documents without
asking users to create documents in new ways. Such
an intelligent agent redefines “document” from a
stream of characters to a data structure containing
specific, known kinds of structures that can play spe-
cific, known roles in user interactions. Such an
approach can provide a foundation for more powerful
analyses beyond our current recognition and parsing
technology. Future work could explore the use of
more sophisticated kinds of recognition and parsing,
including those that rely on finite state technology

COMMUNICATIONS OF THE ACM March 1998/Vol. 41, No. 3 103

Users can be imprecise,

throwing the system

a broad hint that there is

something of interest,

then let the system use

its knowledge to

do the right thing.

and linguistically informed context analysis [5], as
well as integration with statistical techniques of data
analysis, such as relevance-based techniques.

One important future step for research will be to
build knowledge into the system about the structures
being recognizing and how these structures are
related to user goals and tasks. Doing so will provide
the basis for more flexible and powerful task support.
For instance, if we can attribute some reasonable set
of email address semantics to the textual presentation
of an email address in a document, the system can use
the address as a pointer to the person with that
address. We can then carry out system actions
intended for people (such as “Place a phone call to
this person”) on an email address and let the system
figure out the person implied by the address. (This
can already be done through Apple Data Detectors
but requires writing a script, rather than relying on
inferencing as suggested here.) Such interaction
might require a different user interface from the one
used today. One can certainly imagine many different
kinds of user interfaces to the basic structure-detec-
tion technology underlying the current system.

Along with a growing number of individual gram-
mars in the system, the possibility of ambiguous or
inappropriate interpretations of user information
also increases, especially given the relatively weak
context-free grammars and parsers we are working
with. It is easy to imagine a company might choose
a syntax for its product order numbers—a three-
digit department code followed by a dash followed
by a four-digit product code—that would overlap
with U.S. telephone number syntax, thus leading
Apple Data Detectors to offer both telephone num-
ber and part-ordering actions for phone numbers and
product codes. We can do little about these overlap-
ping syntaxes without performing a much deeper,
semantic interpretation of the text in which the pat-
tern appears, and it is not clear that such processing
could be done in the limited time available for
Apple Data Detectors’ text analysis.

We have also seen finer ambiguities in interpreta-
tion that may be resolvable in future versions of the
system. For example, given the URL
www.apple.com/doit.html, the current Apple Data
Detectors finds the intended URL as well as the
somewhat surprising pattern of “it.html.” This pat-
tern is, however, recognized by the Newsgroup
detector as an instance of a Usenet newsgroup,
which, like many newsgroups based in Italy, begins
with the characters “it.”. This interpretation clearly
seems incorrect, and time-efficient parsers that avoid
such interpretations could likely be constructed.
However, we have found that such problems do not

detract from the value of Apple Data Detectors
because users typically understand why the misin-
terpretation occurred, and the design of the user
interface makes it easy for them to ignore it.

Beyond such enhancements, another goal is to
complete a prototype of an end-user programming
facility to enable end users to program detectors and
actions, opening up the full Apple Data Detectors
capability to all users. After all, Apple Data Detec-
tors is meant to empower end users, and our intent
is to enable people to play a role in the creation of
tools that is as active as their use of them.

References
1. Barreau, D., and Nardi, B. Finding and reminding: File organization

from the desktop. SIGCHI Bulletin 27, 3 (July 1995), 39–43.
2. Benyon, D., and Murray, D. Developing adaptive systems to fit indi-

vidual aptitudes. In Proceedings of the 1993 International Workshop on
Intelligent User Interfaces (Orlando, Fla., 1993).

3. Cohen, P., Cheyer, A., Wang, M., and Baeg, S. An open agent archi-
tecture. In Proceedings of the AAAI Spring Symposium Series on Software
Agents, O. Etzioni, Ed. (Stanford, Calif., March 1994), American Asso-
ciation for Artificial Intelligence, Menlo Park, Calif., 1994, pp. 1–8.

4. Etzioni, O., and Weld, D. A Softbot-based interface. Commun. ACM 37,
7 (July 1994), 72–76.

5. Kennedy, C., and Boguraev, B. Anaphora in a wider context: Tracking
discourse referents. In Proceedings of the 12th European Conference on Arti-
ficial Intelligence (Budapest, Aug. 11–16, 1996), pp. 582–586.

6. Lanier, J. Agents of alienation. Interactions 2, 3 (1995), 66–72.
7. Maes, P. Agents that reduce work and information overload. Commun.

ACM 37, 7 (July 1994), 31–40.
8. Nardi, B. A Small Matter of Programming: Perspectives on End User Com-

puting. MIT Press, Cambridge, Mass., 1993.
9. Nardi, B., and O’Day, V. Intelligent agents: What we learned at the

library. Libri 46, 3 (Sept. 1996), 59–88.
10. Pandit, M., and Kalbag, S. The selection recognition agent: Instant

access to relevant information and operations. In Proceedings of Intelligent
User Interfaces ’97, ACM Press, New York, 1997.

11. Rus, D., and Subramanian, D. Multimedia RISSC Informatics. In Pro-
ceedings of the 2nd International Conference on Information and Knowledge
Management. (Washington, D.C., 1993), ACM Press, New York, 1993,
pp. 283–294.

12. Shneiderman, B. Looking for the bright side of user interface agents.
Interactions (Jan. 1995), 13–15.

Bonnie A. Nardi (nardi@research.att.com) is a researcher in
AT&T Labs Research in Menlo Park, Calif. She is a former
researcher in Apple’s Advanced Technology Group.
James R. Miller (jmiller@acm.org) is the former program
manager for intelligent systems in Apple’s Advanced Technology
Group.
David J. Wright (dave.wright@apple.com) is a programmer in
Apple’s Operating Systems Technologies group, further developing
Apple Data Detectors.

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe-
cific permission and/or a fee.

© ACM 0002-0782/98/0300 $3.50

c

104 March 1998/Vol. 41, No. 3 COMMUNICATIONS OF THE ACM

