Creating Presentation Slides: A Study of
User Preferences for Task-Specific versus
Generic Application Software

JEFF A. JOHNSON
Sun Microsystems

and

BONNIE A. NARDI
Apple Computer

We conducted a study to investigate the use of generic versus task-specific application software by
people who create and maintain presentation slides. Sixteen people were interviewed to determine
how they prepare slides, what software they use to prepare and maintain slides, and how well the
software they use supports various aspects of the task. The informants varied in how central
slidemaking was to their jobs. The hypotheses driving the study were that: (1) some software
applications are task generic, intended for use in a wide variety of tasks, while others are task
specific, intended to support very specific tasks; (2) task-specific software is preferable, but is often
not used because of cost, learning effort, or lack of availability; and (3) people who infrequently
perform a task tend to use generic tools, while people who often perform it tend to use task-specific
tools. Our findings suggest that several factors influence choice of slidemaking software, including
desired quality, production time, user skill, willingness to use multiple tools, whether people work
alone or in teams, and company policy. Furthermore, the task specificity/genericness of an
application program is not a simple matter of degree, because it depends on several fairly
independent software design issues. We (1) conclude that developing application software that
supports all aspects of a task well is extremely difficult and (2) suggest an alternative approach
that may be more fruitful: providing collections of interoperable tools and services.

Categories and Subject Descriptors: H.1.2 [Information Systems]: User/Machine Systems—
human factors; H.4.0 [Information Systems Applications): General; H.5.2 [Information
Interfaces and Presentation): User Interfaces; 1.3.4 [Computer Graphics): Graphics
Utilities—application packages; graphics editors; K.8.1 [Personal Computing}: Application
Packages—graphics

General Terms: Human Factors

Additional Key Words and Phrases: Application software, interoperability, interview study,
slide presentations, task analysis, task specific

Authors’ addresses: J. A. Johnson, SunSoft, 2550 Garcia Avenue, MS UMPK 16-303, Mountain
View, CA 94043; email: jeffrey.johnson@eng.sun.com; B. A. Nardi, Apple Computer, 1 Infinite
Loop, Cupertino, CA 95014,

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1996 ACM 1073-0516/96/0300—0038 $03.50

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996, Pages 38-65.

User Preferences for Task-Specific versus Generic Software . 39

1. INTRODUCTION

Despite significant advances in user interface technology since the mid-
1970s, the majority of households in the industrialized world do not yet
own a personal computer [Fox 1995; SPA 1995]. One plausible reason is
that most people are not interested in mastering and using computers per
se, but only in performing tasks in familiar domains. People who use
computers must often master unfamiliar concepts (e.g., files, directories,
commands and arguments, control characters, cursors, modes, text strings,
selection) that are about computation, rather than about the person’s task
or problem domain. Furthermore, computers-—even those with graphical,
WYSIWYG, menu-based user interfaces—require their users to supply the
mapping between the objects and operations provided by the computer and
the goals, objects, and operations of the task domain. It is, however, well
established that people cannot easily provide this mapping: they cannot
easily decompose their tasks into pieces that match the capabilities of
today’s computers, and they cannot easily combine the computer’s capabil-
ities so as to produce a solution to their problem [Hutchins et al. 1986;
Lewis and Olson 1987]. People want to work in their own domain-specific
idioms, not those of the computer [Fischer and Lemke 1988].

An antidote to the limitations of computer-centric software might be to
provide highly task specific applications that allow people to work in the
actual task domain rather than having to map that domain to the domain
of computation. This idea underlies research efforts to prototype interactive
applications that supply a high degree of task semantics [Fischer et al.
1989], as well as several projects to develop software development environ-
ments that support the development of such applications [Casner 1991;
Fischer and Lemke 1988; Gould et al. 1991; Johnson et al. 1993; Olsen et
al. 1992; Vlissides and Linton 1990].

The present study was conducted as part of an effort to better understand
what it means for software to provide “task-specific” support for a task. In
what ways do computer-based applications vary in their degree of support
for tasks? Under what circumstances is a high degree of task support
necessary or unnecessary? Because of our interest in fostering the develop-
ment of task-specific applications in a variety of domains [Johnson et al.
1993; Nardi 1993; Nardi and Zarmer 1993; Zarmer et al. 1992], we
conducted a study to gain some insight into the determinants of user
preferences for task-specific versus generic software. The task domain we
studied is the creation and editing of slides for visual presentations.

We began with a working hypothesis, but some background is necessary
before we state it and describe the study. First, we give some examples of
software applications and discuss their varying levels of task specificity.
Next, we compare the support that various types of programs provide for
slidemaking and then state our initial working hypothesis. Finally, we
describe the study and our findings and offer some conclusions.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

40 . J. A. Johnson and B. A. Nardi

2. MOTIVATION FOR THE STUDY

2.1 Task-Specific vs. Generic Tools

What exactly do we mean by “task specific”? Consider the average kitchen.
Most kitchens contain a large variety of tools. Some tools are designed for
use in many different tasks, e.g., knives, bowls, spoons, stoves, pots. Others
are designed for a relatively small set of tasks, e.g., blenders, peelers,
tongs, basters, graters, cutting boards, butter knives. Still others are
designed for one task only, e.g., fish scalers, cheese slicers, nutmeg grind-
ers, apple corers, cookie cutters, coffee makers.

The functionality of a task-specific tool maps well onto the objects and
actions in its target task domain. Consider two programs for maintaining
checking accounts. The first program allows its users to work with objects
such as accounts, checks, dates, interest, fees, and amounts of money, and
actions such as withdrawing, depositing, balancing, and auditing. The
second program makes its users work with objects such as files, filenames,
text fields, integers, data records, and tables, and actions such as loading
buffers, opening windows, editing text fields, and inserting table rows. The
second program places more of a burden on its users: it requires them to
figure out how actions on objects in the domain of computation map to
accomplishing tasks in the domain of managing checking accounts. This is
so even if the second program has a graphical user interface.

For many tasks in which computers are used, a large variety of software
tools are used, ranging from extremely generic to extremely specific. Some
people use calculators for preparing income tax returns; some use spread-
sheets; and some use income tax programs designed for a particular year.
Some companies do their accounting on calculators; some use spreadsheets;
some use general accounting packages; some use accounting packages
designed for a particular type of business (e.g., restaurants); and some use
custom accounting software developed exclusively for them. For preparing
organization charts, some people use painting programs; some use struc-
tured drawing programs; some use general tree-graph editors; and some
use organization-chart editors. Similar series can be seen for producing
family trees, creating schematic diagrams, managing inventories, and other
tasks.

The application programs in each of these series provide successively
more built-in semantic support for the task. The purpose of task-specific
support is not to improve task products—indeed, as described later in this
article, task-specific tools often limit what can be produced—but rather to
improve task processes.

Our use of the term task-specific software corresponds closely to the term
task-integrated software as used by Nielsen et al. [1986] in a study of
software used by business professionals. Though their study focused on the
use of integrated software in business, not all integrated software is
task-integrated in their view. For example, a program containing word
processing, spreadsheet, and drawing functionality, but no significant

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

User Preferences for Task-Specific versus Generic Software . 41

semantic support for any particular application of that functionality, would
be considered integrated but not task integrated by Nielsen et al. {1986].
We will return to this point in the Conclusions section.

Nielsen et al. [1986] also refer to specialized, standalone application
programs, but mean by that something independent of task specificity.
Whereas they would classify a simple text editor as “specialized” because it
is not integrated with anything else, we would call it “generic” because it is
nearly devoid of task semantics. On the other hand, a standalone family
tree editor that embodied semantics of how family trees are constructed,
which we would consider “task specific,” would also be considered by
Nielsen as “specialized,” again because of its lack of integration. Thus,
whether a program is “specialized” in their terminology has nothing to do
with whether it is “task specific” in ours.

After we have described our interview study, we will have more to say
about application software task specificity.

2.2 Creating Presentation Slides

Slide preparation is a task for which a wide variety of computer-based tools
are used. By slides, we mean both 35mm slides and overhead transparen-
cies. People prepare slides using text editors, desktop publishing systems,
painting programs, drawing programs, spreadsheets, statistical analysis
programs, business graphics programs, animation programs, and, recently,
presentation-making programs.

Many people use structured drawing programs for making presentation
slides. With drawing programs, users place manipulable graphical objects
on a canvas. Text and graphics, once placed, can be edited, moved, or
copied. However, the drawing programs’ degree of support for slidemaking
is limited. They offer, for example, no notion of a presentation set of slides.
Users can compensate by putting slides into separate files and grouping
them in folders or directories, or by placing all the drawings of a presenta-
tion together on one canvas; but such workarounds are inconvenient and
inefficient. Additional drawbacks of drawing programs as tools for slide-
making are:

— They provide no support for consistency of format, font, and layout in a
presentation. To have the same margins on every slide, drawing pro-
gram users must painstakingly arrange things that way, separately for
each slide. If the formatting requirements change, users must change
every slide.

— Standard slide content, such as logos, headers, and footers, must be
explicitly placed on every slide, and changes require editing every slide.

— They provide little help in changing the structure of a presentation’s
content. Splitting one slide into two requires much explicit copying,
moving, and deleting of graphic objects.

— They provide no support for the actual presentation, e.g., attaching
speakers’ notes to a slide.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

42 . J. A. Johnson and B. A. Nardi

Put succinctly, drawing programs lack the concepts of slides, relation-
ships between slides, and presentations. Most of the other types of software
used for preparing slides also lack support for the process of creating and
editing presentation slides. Nonetheless, they are commonly used for that
task.

In recent years, software designed specifically for creating presentations
has become available (e.g., Charisma™, Persuasion™, and PowerPoint™),
Since such programs are intended only for slidemaking, they can provide
much more support for that task. Slides comprising a presentation are
contained in one file. The format and common content of slides are specified
once for the presentation, rather than separately for each slide. Typical
slide-editing actions, like removing or adding a level of detail, are explicitly
supported. Finally, many such programs support the task of giving the
presentation.

Note that—given enough time, skill, and talent—any slide or presenta-
tion that can be produced with a presentation program can also be
produced with a drawing program. Presentation programs facilitate the
process of creating, editing, and maintaining presentations by providing
built-in domain knowledge. Supporting the process of performing a task
may be more important for the usability of a software application than
getting the user interface right—at least as the term “user interface” has
conventionally been used. We illustrate this with a story from the experi-
ence of the first author.

In the early 1980s, at a company where the first author worked, employ-
ees made presentation slides using a text editor in conjunction with a
slide-formatting program. To make a set of slides, employees created a text
file containing the textual slide content and embedded formatting com-
mands. The text file was then “compiled” using the slide formatter, produc-
ing a set of graphics files containing images of the slides. Employees had
many complaints about this process. The formatting commands were hard
to learn; it was hard to tell how a particular slide would look from its
source file; one had to “compile” the entire set to check how a single slide
looked.

When interactive painting and drawing programs became available, most
employees switched to them immediately. The new programs were easier to
learn and provided much better feedback than did the text editor/formatter
combination.

However, people soon learned that the new programs, for all their user
friendliness, did not support slidemaking very well. With the new pro-
grams, it was hard to obtain consistent formatting, hard to manage sets of
slides, and hard to edit slides. After a short honeymoon, most employees
switched back to the old programs, occasionally using the new ones to
enhance slides generated by the slide formatter.

At the time, this mass retreat to the old tools was perplexing. People had,
unaccountably, eschewed the advantages of direct-manipulation interfaces
and WYSIWYG interaction to return to an old-fashioned text-based com-
mand language and tedious edit-compile-debug cycle.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

User Preferences for Task-Specific versus Generic Software . 43

2.3 Working Hypothesis

As we began our research on user-centered development of task-specific
applications {Johnson et al. 1993], we explained the foregoing story as
follows. People abandoned the new tools because these tools were not task
specific. They were not slidemaking programs, but rather generic painting
and drawing programs. Though the new tools made some aspects of the
slidemaking task easier, they made others harder. The aspects of the task
that became easier were those in the domain of the “user interface”; they
had more to do with controlling—and learning to control—the software
than with making slides. The aspects of slidemaking that the new tools
made more difficult were the deeper, more task-related aspects, e.g.,
assuring graphical consistency between slides. While employees could, with
effort and talent, make nicer-looking presentations with the new tools,
more people could produce acceptable presentations much more quickly
with the old tools. Having a “task-friendly” application was more important
to users than was having a “user-friendly” interface.

We also reasoned that the order in which people learned these tools
played a role in their ultimate preference. After switching to the WYSIWIG
tools, they were willing to switch back to the textually controlled slide
compiler despite its being hard to learn, because they did not have to learn
it; they already knew how to use it. Had the slide compiler become available
after the WYSIWIG-but-generic drawing tools, most employees—mainly
those who produce relatively few slide presentations—would probably have
stayed with the generic drawing and painting tools. The effort required to
learn to use the slide compiler would not have been worth the expected
return. We assumed that people who produced slide presentations fre-
quently, but learned the generic painting and drawing tools first, would
probably invest the time to take advantage of the slide compiler’s greater
semantic support for slidemaking.

Stated more formally, our initial analysis and experience with interactive
computer-based applications led us to the following four-part hypothesis:

(1) Task specificity: The more knowledge of a particular task is built into a
software application, the more specific it is to that task, i.e., the less
applicable it is to other tasks. Software applications can be considered
to occupy a position along a continuum, from completely generic to
completely task specific.

(2) Task-specific tools preferred: 1t is best to have a tool designed specifi-
cally for the task one is performing. For example, for preparing sche-
matic drawings, a schematic editor is preferable to a drawing editor.
Good support for a task is even more important for overall usability and
productivity than is a good “user interface” in the traditional sense of
the term.

(3) Limited market: The more task specific a software application is, the
smaller its potential market, requiring the developer to either charge a
higher price or be satisfied with less revenue.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

44 . J. A. Johnson and B. A. Nardi

(4) Factors of choice: People use generic applications when ones that are
more task specific are either unavailable, cost too much, or require too
much (incremental) learning effort. In today’s software market, and
given the state of application development technology [Myers 1989;
Zarmer and Johnson 1990], these conditions usually hold. Most com-
puter users therefore “get by” with generic tools—e.g., text editors and
drawing editors—because their level of need does not justify the cost of
obtaining and learning to use task-specific ones. People prefer task-
specific tools when they perform a task frequently. Their level of use
justifies the overhead of acquiring and learning to use the tool.

Based on these beliefs, we (and other colleagues) began developing an
Application Construction Environment (ACE) designed to facilitate the
development of task-specific software applications [Johnson et al. 1993;
Nardi and Zarmer 1993; Zarmer et al. 1992). One goal of ACE was to make
development of many business applications easy and cheap enough that it
would be cost effective to develop highly task specific applications for small,
specialized markets and short-term tasks. This was done by prepackaging
commonly needed functionality in extensible application frameworks that
could, like spreadsheets, be specialized for specific tasks [Nardi 1993;
Nardi and Miller 1990; 1991]. A related goal was to promote a development
process based heavily on task analysis and to move the center of the
development process much closer to the computer users, who best under-
stand their goals and tasks. A third goal was to provide support for
representing task semantics more explicitly than do conventional software
development tools.

As we developed ACE, we were aware that our four-part hypothesis
should be empirically tested. Over time, we began to suspect that parts of it
were incorrect. For example, a colleague who had previously worked as a
graphic artist producing presentation slides for others indicated that
experienced professional slidemakers prefer generic drawing and painting
software for creating slides because it does not restrict them from doing
what they want, while dedicated slidemaking programs often impose over-
simplified views of the task and restrict the results that can be produced.
Based on this counterclaim and on our own further analysis of the nature of
task specificity, we decided to conduct an empirical study as a first step in
evaluating and correcting our working hypothesis. We chose the domain of
slidemaking because of the large variety of software tools used for that
task, the relative accessibility of informants, and, not least, the challenge
posed by our graphic artist colleague.

3. METHOD

We conducted an interview study to examine how people use computer
software to create presentation slides. Since the marketplace for software
used in slidemaking changes rapidly, it is important to note that we
conducted the interviews in January through February of 1992. As refer-
ence points, the versions of Microsoft Word™, Microsoft PowerPoint™, and

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

User Preferences for Task-Specific versus Generic Software . 45

Aldus Persuasion™ in use among our informants then were 4.0, 2.0, and
2.0, respectively.

3.1 Informants

The informants were 17 people whose jobs involved creating, editing, and
maintaining slide presentations. Two were a husband and wife who
worked—and were interviewed—together; for the purpose of this study,
they were treated as one informant. All informants were college educated
with several years experience making slides. They worked for a variety of
companies, ranging from one-person independent consultantships to large
multinational corporations in the San Francisco Bay Area (most outside of
Silicon Valley). Six of the 16 informants worked in research or marketing
and made slides for their own use in presentations, with slidemaking being
only one of many of their job responsibilities. The other 10 informants can
be considered professional slidemakers; they had, as a significant (for some,
dominant) part of their job, the creation of presentation slides for others, in
a variety of business areas: legal, advertising, research, and general
business.

Our informants were quite happy to talk about their slidemaking soft-
ware. Several warned when scheduling the interview that their busy
schedule could accommodate only a brief interview, but then in the inter-
view they seemed willing to talk for as long as the interviewer would listen.
People apparently have strong opinions, both positive and negative, about
the software they use.

3.2 Procedure

We developed a set of questions that covered the issues of interest in this
study (see Appendix A). Most of the interviews were conducted at the
informant’s workplace, often with a computer slidemaking system ready-at-
hand so that we could see the user’s work online.

The interviewer began each interview by explaining that the purpose of
the study was to learn what is involved in making slide presentations, what
sorts of software people use for the task, and what people’s reasons are for
using or not using various software tools. The interviewer then asked the
informant to describe the entire slidemaking process, from start to finish.
The interviewer allowed the conversation to flow, more or less, naturally
rather than strictly following the list of questions, but made sure that
answers to each of the predetermined questions were captured on tape. The
interviewer did not explain the distinction between task-specific versus
generic software, or our initial working hypothesis. Interviews ranged from
1 to 3 hours per informant.

Interviews were audiotaped, then transcribed onto computer text files.
About 250 pages of transcripts resulted from the interviews.

3.3 Data Analysis

We read transcripts of each interview, in some cases referring to the
audiotape to clarify transcription problems or informant intent. A summary

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

46 . J. A. Johnson and B. A. Nardi

was made of each interview that included: the informant’s job role and
involvement in slidemaking, the context in which slides were being pro-
duced, a summary of the slide production process as described by the
informant, the software the informant uses or has used for slidemaking,
the informant’s reasons for using it, software features that the informant
considered useful or a hindrance in slidemaking, and informant comments
(if any) that seemed especially germane to the study. From these summa-
ries, we constructed tables summarizing our findings and computed some
summary statistics.

4. RESULTS

The 16 informants in our study reported using a total of 25 software
programs for preparing slide presentations. The average number of pro-
grams per informant was 4.4, ranging from 1 to 8. The average was 5.6 for
our informants who were professional graphic artists, and 2.5 for our other
informants. All six who were not graphic artists ranked below the median
number of programs used for slidemaking, which would be highly improb-
able by chance. This is of course not surprising: one would expect graphics
professionals to have a larger collection of tools for slidemaking than
amateurs.

4.1 Tabulation of Interview Data

Table I lists all of the types of software used by informants in preparing
presentations and gives examples of each software type. “Desktop publish-
ing” refers to WYSIWYG document editors and page layout programs.
“Document compiler” refers to programs that compile text containing
embedded formatting commands into formatted documents. Table I shows
that even though the number of informants interviewed in our study was
relatively small (16), our informants, as a group, used a wide variety of
types of software to prepare slide presentations.

Readers who wish to see a “raw” tabulation of the interview data should
refer to Appendix B. Appendix B also includes a discussion of methodolog-
ical issues we encountered in tabulating the interview data. For present
purposes, tables that aggregate the raw data, thereby showing tendencies,
will suffice.

Table II categorizes informants into types (professional slidemaker ver-
sus amateur) and indicates, for each type of software, what types of users
used it. It separates creating or organizing presentations from creating
presentation content. It shows that for creating and organizing slide
presentations, presentation and desktop publishing programs were the two
most popular types, for both professional and amateur slidemakers. For
generating presentation content, drawing and charting programs were
popular among professional graphic artist informants. Informants who
were slidemaking amateurs tended to stick to one program and not use
auxiliary software to produce slide content; the few who used auxiliary
programs mainly used spreadsheets to produce charts.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

User Preferences for Task-Specific versus Generic Software

Table I. Software Types Found in Study, with Examples of Each Type

|__Software Type Example Software

| Presentation PowerPoint™, Persuasion™, Charisma™
Drawing MacDraw™, Hlustrator™, Corell Draw™
Painting MacPaint™
Charting CricketGraph™, Harvard Graphics™

Desktop Publishing

FrameMaker™, Word™, PageMaker™

Document Compiler

LaTeX, troff

Animation Macromind Director™
Spreadsheet 123™ Excel™
Database Paradox™

Image Processing | PhotoShop™

47

Custom --

Table III groups the specific types of software (e.g., drawing, painting,
charting) into more general categories (e.g., Graphics), and indicates what
types of users used what combinations of these software categories. For the
purposes of Table IIl, spreadsheet, database, and custom programs were
included in the Graphics category along with drawing, painting, and
charting programs because informants told us that for slidemaking they
used those types of software to generate data-driven graphics. Desktop
publishing programs and document compilers were categorized as Docu-
ment. Table III shows that the two most common combinations of software
tools used by graphics professionals were Graphics only (four professionals)
and Presentation, Document, and Graphics (four professionals). It also
shows that professional graphic artists tend to use a larger collection of
software programs for preparing slides than do “amateur” slidemakers, i.e.,
people who create presentations only as a small part of their jobs. The
“graphics professional” listed as using only Presentation software was in
fact a group of graphics clericals, referred to as “secretaries” by the
informant who managed them. Among graphics amateurs, who tend not to
use more than one program for making slides, Document software was the
most popular category.

5. DISCUSSION

As the tabulated data show, the main finding of the study was that our
original hypothesis was right in some respects and wrong in others and
that the truth is more complex than either we or our graphic artist
colleague understood. Four out of six of the informants for whom slidemak-
ing was peripheral to their job used whatever general-purpose software
they used for other work, e.g., document production. However, two such
informants took the time to learn how to use task-specific presentation

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

48 . J. A. Johnson and B. A. Nardi

Table II. Number of Users (Professional and Amateur Slidemaker) Using Each Type

of Software

Creating and Organizing Presentations

Software Type Professional Amateur Total
Presentation 80of 10 20f6 10 of 16
Drawing 30of 10 10of6 40f 16
Desktop Pubs 7ot 10 30f6 10 of 16
Doc Compiler 0of 10 20f6 20f 16
Animation 4 0f 10 Oof 6 40f 16
Creating Presentation Content for Export into Other Programs

Software Type Professional Amateur Total
Painting 40f10 10of6 50f 16
Drawing 7of 10 10of6 8of 16
Charting 50f 10 Oof 6 50f 16
Spreadsheet 30of 10 30f6 60of 16
Desktop Pubs 20t 10 Oof6 20of 16
Image Processing 30t10 Cof6 3of16
Database 0of 10 10of6 10of 16
Custom 10of 10 Oof6 1 of 16

Informants who use more than one type of software for slidemaking are counted once for
each type of software they use.

programs. Though no statistical tests are feasible here, the trend favors our
initial hypothesis that people who create few presentations tend to use
generic software to prepare slide presentations.

However, contrary to our hypothesis but in agreement with the claims of
our graphic artist colleague, few of our informants who are full-time
slidemakers rely mainly on task-specific presentation programs. Most made
extensive use of generic software such as drawing, painting, and word
processing programs rather than sticking to slidemaking programs. In the
following sections, we describe the factors affecting software choice that
emerged from our interviews, then revise our analysis of task specificity.

5.1 Factors Affecting Choice of Slidemaking Software

We found that the choices of software to accomplish a particular slidemak-
ing task are highly dependent on specific requirements. Furthermore, the
requirements are not fixed for a given person; they vary from specific task
to specific task within the domain of creating and maintaining slide
presentations. User requirements vary according to several factors.

5.1.1 Presentation Quality, Production Time, and User Skill Level. One
factor that influences professional slidemakers’ choice of software is the

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

User Preferences for Task-Specific versus Generic Software . 49

Table III. Usage of Combinations of General Software Category by User Type

Combinations of Software
Graphics | Graphics
Presentation| Document | Graphics | Animation | Professional | Amateur | Total
1 0 1
0 2 2
4 1 5
0 0 0
1 1 2
0 1 1
0 1 1
g 1 0 1
4 0 4
....... T 5 ;
E 0 2

The document category includes desktop publishing and document compiler software. The
graphics category includes drawing, painting, charting, image processing, spreadsheet, data-
base, and custom software. The Graphics Professional column includes four people managed
by informants as well as the informants themselves.

desired quality of a presentation. Closely related to this is the time one has
or takes to produce the presentation. Our data make it clear that slidemak-
ing tasks vary a great deal in requirements. Some presentations are for
coworkers, and some are for external customers. Some presentations are
considered ordinary while others are “fancy” or “very important.” Most
presentations are relatively mundane; others have millions of dollars riding
on the impression they make. The goal of producing a fancy presentation
leads to different choices than the goal of producing an ordinary presenta-
tion. Each kind of presentation entails organization, illustration, and other
subtasks, but the differing goals mandate optimizing different aspects of
the overall process.

Presentation slides are often produced on very short schedules, with
production time being more important than illustration quality. To quote
from two of our informants:

Usually speed is an issue here rather than quality. . .it’s always like down to
the last minute.

They always wanted everything yesterday. They will come to me with very little
time to turn around slides.

Though many presentations are prepared on tight deadlines, not all are.
Some—usually the very important, fancy ones—are anticipated and
planned well in advance.

Many slidemaking organizations use different software, processes, and
even personnel for producing plain presentations—the majority—than they

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

50 . J. A, Johnson and B. A. Nardi

do for producing fancy or very important ones, of which there are relatively
few. To produce plain presentations quickly, professional slidemakers
tend to use dedicated slidemaking programs (though factors such as
familiarity and availability sometimes limit this tendency). This is as we
had predicted. However, for fancier presentations, professional slide-
makers usually use generic drawing, painting, desktop publishing, or
animation software, though sometimes with presentation programs serv-
ing as the final container and organizer.

Some firms employ less-skilled graphics personnel to produce the simpler
slide presentations, and more highly trained graphic designers and artists
to produce fancy graphics and presentations. For example, one firm has a
specialist who creates high-quality color presentations and fancy graphics
using generic illustration software, and “everyone else just does straight
charts and graphs” and “word slides” using a presentation program. Our
initial working hypothesis distinguished only between people for whom
slidemaking is peripheral to their job (e.g., researchers who give conference
papers) and those for whom slidemaking is their main job, but our inter-
views made it clear that the latter category consists of two quite different
sorts of workers. Some full-time slidemakers are highly trained artists;
they have a lot of talent, skill, and knowledge in the task domain (e.g.,
presentation style, graphic art). They tend to use tools that provide more
freedom to exercise their domain knowledge and creativity, i.e., collections
of generic software. Other full-time slidemakers are graphic clericals; they
may have training and skill at operating their tools, but their training and
skill in the graphic art task domain is low compared to graphic artists.
These are people who are either (1) more concerned about being productive
than they are about acquiring graphic art skills or (2) in jobs allowing them
less autonomy and creativity. They tend to use tools that provide the bulk
of the task knowledge (and assumptions about what sorts of presentations
one will want) built-in, i.e., presentation-making programs. This explains
why some of our findings regarding full-time slidemakers initially seemed
split between those conforming to our original hypothesis and those that
agreed with the claims of our graphic artist colleague.

One aspect of presentation quality is the quality of the graphic art.
Highly trained graphic artists often use generic illustration software be-
cause the drawing capabilities of slidemaking programs are insufficient
and limiting from their point of view. Here are some illustrative quotations
from our interviews:

Persuasion’s not the best drawing tool.

.. .the graphic tools in Persuasion are kind of low-end, not very powerful.
Persuasion’s drawing tools are too weak.

[With MacDraw] you have more control.

You can do it in PowerPoint, but depending on the art, sometimes it’s fast-
er. . .to do it in MacDraw and paste it in.

I think the main point about why we use MacDraw is because, yeah. . .Persua-
sion would be better for a lot of word slides. . .But nobody’s willing to simplify

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

User Preferences for Task-Specific versus Generic Software . 51

their graphs that much. You know? It’s like they would have to. . .work at such
a simple level to make a presentation, that nobody, they can't, the [clients] can’t
cut down on the complexity of their slides, to be able to fit in with the
limitations of a program like that.

Persuasion and PowerPoint are sort of integrated programs, and they’re good
for someone who isn’t a power word processor, who isn’t a power graphic artist,
where they basically want to type in their own headers and dot points; and it’s
great for that. . . . But if you have to go beyond that where you're. . .doing real
serious word processing, or doing some real elaborate graphics, it just doesn’t
cut it either way. . .. There hasn’t been any software that does everything well.
[emphasis added]

Because of this, professional graphic artists who create illustrations for
slides tend to use generic drawing and painting tools, which give them the
freedom to use their skills and to produce the illustrations they want. Some
illustration programs provide image-enhancing features such as antialias-
ing, three-dimensional effects, and highlighting, which are absent in dedi-
cated slidemaking programs. This is similar to the findings of Nielsen et al.
{1986], although as explained in the Introduction, their terminology differs
from ours:

As the example with presentation graphs shows, a key reason for the lack of use
of integrated packages seems to be lack of functionality in them compared with
specialized stand-alone application programs. In many cases we found users
who simply needed the added functionality of a specialized program and
therefore used it for one of the applications they theoretically had available in
their integrated package [Nielsen et al. 1986, p. 164].

Professional slidemakers producing fancy presentations provide a mirror
image example to our story in which people retreated from new “user-
friendly” generic illustration software to their old slide formatter. The
people in that story did not want or need to optimize illustration; for them
the goal was to produce acceptable slides quickly, rather than to produce
beautifully illustrated slides. In contrast, a professional slidemaker prepar-
ing a fancy presentation is most concerned about graphic quality.

5.1.2 Willingness to Use Multiple Programs in Concert. To get the
functionality they require, professional slidemakers often use slidemaking
programs as only one of a set of interoperable tools. This is clear from
Tables IT and III. What is not shown in the tables is that professional
slidemakers often use slidemaking programs, ironically, not to make slides
but rather to contain and organize them. For example, one informant said:

At [company X], they use PowerPoint. They offer MacDraw, Freehand, Illustra-
tor for the illustration part of it. But it’s all driven by PowerPoint. It’s all put in
PowerPoint.

Thus, the programs that we had regarded as task-specific tools that
supported, end to end, the entire slidemaking process, were in many cases
being used as tools to support a specific subtask of slidemaking, namely,
containing and organizing slides for presentations. However, some graphic

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

52 . J. A. Johnson and B. A. Nardi

artist informants ignored even the organizing functionality of dedicated
presentation software. One informant, for example, told us she used a
drawing program for that purpose:

Everything comes through MacDraw Pro no matter where it starts.

Of course, even though there has been much progress in software integra-
tion and interoperability since Nielsen et al. [1986] conducted their study of
software use, few programs used by our informants were designed to be
used together, and not surprisingly they often cannot be. Interoperability is
very important to professional slidemakers: they do not think much of
dedicated slidemaking tools that cannot easily accept text and graphics
from a variety of sources. One feature that several informants said is
missing from most of their tools is the ability to share—rather than
copy—content between applications, allowing a single piece of content to
appear in multiple presentations at once and to be updated everywhere
automatically when the source is changed. Macromind Director™ and, to a
lesser extent, Framemaker™ were the only programs that our informants
used that possessed this kind of interoperability.

5.1.3 Teamwork. A fourth factor in determining the users’ choice of
slidemaking software is whether the degree of teamwork supported or
allowed by the software matches the work practice of the users’ organiza-
tion (see Nardi [1993] for a discussion of collaborative application develop-
ment practices). Most slidemaking programs are designed to support an
individual who produces slides alone. However, we found that, in many
settings, people work in teams to produce and maintain slides. Existing
dedicated slidemaking programs make it difficult to do this. According to
one informant:

I looked at Persuasion, because everybody was saying that Persuasion was
great. And I think a bunch of the secretaries. . .used it as well. And I think the
programs that are that specific are very well designed for a person who is going
to sit down and think up a presentation and create the presentation right there.
But the way we work is that, you know, there are dozens of people out there
thinking up things, and we integrate presentations for all of them. And so for
us to be able to distribute that work amongst enough people to get it done, we
need to break it down into smaller units. ... For each job here, if we used
Persuasion, each job. . .would have its own. . .file with all of its slides in it. But
slides get used from one job to another. ... And so, I think [that] because of
that it wouldn’t work. The outlining, you know, is wonderful. But it’s really
designed for a different type of work atmosphere. It's is designed for the guy
who’s gitting down and going to do his own presentation.

Though more-generic tools do not provide real support for team produc-
tion, they at least do not interfere with it in the sense that they impose
little structure on the process at all. Whereas presentation programs keep
an entire presentation together on one file, generic programs produce small
pieces of presentations, allowing—indeed, requiring—users to produce,
organize, and distribute the pieces as needed. While task-specific software

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

User Preferences for Task-Specific versus Generic Software . 53

could, in principle, support teamwork, today’s dedicated slidemaking pro-
grams do not encourage sharing of slides and files, either between individ-
uals or between presentations. This seems to be an important factor in
some people’s choice to use generic software for slidemaking.

5.1.4 Company Policy. Some of our informants reported that the soft-
ware tools they used for slidemaking were determined by company policy or
simply by what software the company already owned. Most of our infor-
mants who were not professional graphic artists said that they decided
themselves what software to use to produce presentations for their own
use. One such informant initially used PowerPoint but switched to Persua-
sion because the latter is what the corporate graphic art department used
and because he wanted to be able to exchange presentations and graphics
with them easily.

Among informants who were professional slidemakers, corporate graphic
artists apparently have more influence over the choice of software than do
freelance artists. Of the six corporate graphic artists we interviewed, three
claimed that they decided unilaterally what software to use, and three
claimed that they were involved in the decision. Of the four freelance
graphic artists interviewed, none said that they decide unilaterally; three
said that they were involved in the decision; and one said that the software
is determined by the client company. The last of these was actually a
husband-wife team who worked as freelance graphics consultants and used
different tools at each of two different client companies because each
company had previously developed slidemaking procedures around those
tools. Each company had decided that one program (PowerPoint™ in one;
PageMaker™ in the other) would be the container/organizer for slide
content created using other programs. Finally, it is clear that the software
tools used by graphics clericals who produce “ordinary” business presenta-
tions are much more likely to be determined by management than are the
tools of graphic artists who produce the “fancy” presentations.

Clearly, company policy plays a role in deciding what software is used. Of
course, company policy is often based on history: as one informant pointed
out, because presentation content and formatting are often reused, it is
difficult for a company to change slidemaking software once a large
archival base of presentations has been built up.

5.2 Rethinking Task Specificity

Our findings indicate to us that our initial analysis of task specificity was
naive about both parts of the term “task specific.”

First we had an overly simple notion of task. We assumed that tasks exist
in some a priori sense, i.e., that there is a set of preexisting, well-defined
tasks that people perform, fixed across circumstance. We regarded creating
slide presentations as a task. In fact, the tasks people are trying to
accomplish when they create or edit slide presentations vary tremendously.
More useful concepts for capturing invariance across situations and for
understanding similarities and differences between application programs

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

54 . J. A. Johnson and B. A. Nardi

are provided by classical software engineering and activity theory. Soft-
ware engineering provides the concept of a task domain {Prieto-Diaz 1990]:
application programs are designed to support people working within a task
domain rather than on a task. A task domain is defined—independent of
any particular software program—in terms of what objects exist to be acted
upon by the user and what actions can be performed on those objects.
Activity theory provides a conceptual framework for understanding how
people’s goals interact with a task domain to give rise to activity [Nardi
1996]. It suggests that within a task domain, people’s goals, and hence
their tasks and activities, vary: different people, or the same person at
different times, may need to carry out different actions within the domain
and may have different criteria for success.

Second, we oversimplified what it means for a tool to be specific to a task.
We had originally regarded task specificity as being a continuum, with
completely generic tools at one extreme and ones that are totally task
specific at the other. In fact, tools—including application programs—vary
in several different ways that are related to the notion of task specificity:

— Relative support for actions within a task domain: Real-world task
domains contain many objects and actions. Tasks in such domains
require the execution of multiple actions, which appear in people’s
behavior as different activities. For example, creating a slide presenta-
tion may include creating a topic outline, writing text content, drawing
graphic content, designing a consistent format, determining the slide
order, producing transparencies or photographic slides as output, pro-
ducing talking notes, filing and retrieving slides, and other activities.
Software is expensive to develop, making it infeasible for any program
to provide ideal support for all activities within the target task domain;
developers must choose which ones to focus limited resources on in
designing their program. For example, many dedicated slidemaking
programs provide good support for creating textual content, but poor
support for creating graphical content (see below). According to one
graphic artist informant:

PowerPoint is like one of these. . .software packages that try to incorporate
everything, yet no particular area is very strong.

Application programs therefore, differ from one another in which parts of
the users’ task they support best.

— Support for actions that are common across task domains:
Because of the problem of limited development resources described in
the previous paragraph, some software developers maximize their mar-
ket by designing software tools to support activities that are common to
many task domains (e.g., creating outlines, drawing figures). The target
task domain of such tools is a subdomain of many larger task domains.
Application programs may therefore be specific in that they provide
good support for a narrow activity, but generic in that they may be used
for tasks in quite different task domains.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

User Preferences for Task-Specific versus Generic Software . 55

— Support for coordinating activity and organizing products: In
most task domains, one distinguished activity is coordinating and
guiding the execution of actions, i.e., making sure they are executed
in the right order, each with the right inputs and tools. Another
distinguished activity is storing and organizing the products of
steps in the overall task. These activities concern the overall process,
rather than any part or intermediate product of it. Again, because
development resources are limited, some software tools focus on sup-
porting these activities. For example, some slidemaking programs are
good for producing an organization for a slide presentation from an
outline, or for maintaining and organizing slide presentations, but poor
for creating slide content. To provide explicit support for the overall
process, a tool must embody significant task domain knowledge. To the
extent that a tool succeeds at this, it can relieve its users of the need to
have or supply it. In contrast, when a person uses a tool that supports
only one of many activities in a task domain, the person must supply the
domain knowledge, because the tool does not. Tools that support the
overall process necessarily make assumptions about how their users will
want to perform tasks in the domain and organize the products of their
work. Those assumptions are crucial: they may be wrong for a given
individual or organization or may be based on a naive understanding of
the task domain.

— Specializability: Some tools are designed to be specializable for tasks
and as such do not have fixed task specificity. For example, a power
beater has different attachments, which make it into a batter mizxer, a
blender, a dough kneader, etc. Similarly, some software is designed to
be specializable. Spreadsheets programs, most computer-assisted design
(CAD) systems, some word processing programs, and other programs
provide extension facilities such as formula and macro languages,
stylesheets, and templates to allow users and local developers to add
semantics to support specific tasks. For example, one graphic artist
informant told us that at his company the preferred tool for slidemaking
is a document editor, which through the use of stylesheets and template
files is specialized to provide good support for creating and editing
presentations, even very high quality ones.

The contrast between some of these different aspects of task specificity is
exemplified in kitchen tools by a vegetable peeler and a breadmaking
machine. A vegetable peeler is highly specific in the sense that it supports
a narrow activity well, but generic in the sense that it can be used in
service of a variety of high-level goals (e.g., making salad, baking a carrot
cake, making stew, making carrot sticks). The knowledge for the high-level
task must be provided by the user of the peeler. A breadmaking machine is
highly specific in the sense of automating a particular high-level task (i.e.,
ingredients in; bread out), but includes a variety of subtasks (i.e., mixing,
kneading, rising, baking). The machine embodies a great deal of breadmak-
ing knowledge, in fact substituting for breadmaking knowledge and skill on

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

56 . J. A. Johnson and B. A. Nardi

the part of the person using it, but also limiting the variety and quality of
bread that can be made. Breadmaking machines are therefore for people
who make a lot of fresh bread, but either lack breadmaking skill or, if they
have the skill, value convenience over quality.

6. CONCLUSIONS

6.1 Revised Hypothesis

Our findings require extensive revision of our initial four-point hypothesis.
In this section, we take each point in turn, discussing how it should be
modified in light of our findings.

6.1.1 Task Specificity. We began the study thinking that software ap-
plications vary along a continuum of task specificity, and we found that it
is not that simple. The concept of a tesk as an invariant upon which
software designs and behavioral predictions can be based must be replaced
with the more complex concept of a task domain, within which people’s
goals and specific tasks vary and, with them, their choice of tools.

Furthermore, we realized that building domain semantics into an appli-
cation is not simply a matter of degree. Software applications for a given
task domain vary in which domain activities they support (not to mention
the degree to which their design is based upon task analysis). Software
applications also vary in the applicability of their objects and actions across
task domains and in whether they provide extension mechanisms, which
allow users to add semantics.

We no longer believe that the only way to provide task-specific support is
to build extensive domain semantics into a single application. Following
the revised hypothesis, we discuss an alternative, perhaps more promising
approach.

6.1.2 Task-Specific Tools Preferred. We still believe that people would,
ideally, prefer software designed specifically to support the task domain
they are working in. However, we learned that this is nearly impossible to
achieve via single high-semantics applications except in very small, con-
strained task domains (e.g., household accounting).

We also still believe that the degree of support that software provides for
carrying out actions within its users’ task domain is more important than
whether its user interface is graphical or textual, direct or indirect, menu
or command based. Many of today’s software applications have user inter-
faces that merely facilitate manipulation of abstract computation concepts
rather than allowing people to work within the task domain.

6.1.3 Limited Market. To our claim that more task domain support
means a smaller market, we must add the caveat that not all domain
knowledge is equal. Building coordination and process semantics into a tool
makes it less flexible in the sorts of results it can produce and the sorts of
work practices it allows. Thus, software that incorporates that sort of task
domain semantics has a more limited market than software that incorpo-

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

User Preferences for Task-Specific versus Generic Software . 57

rates other kinds of task domain semantics, e.g., support for specific
intermediate work products.

6.1.4 Factors of Choice. OQOur original hypothesis assumed that the pri-
mary hindrance to the use of what we were calling task-specific software is
acquisition and learning costs. Though it is true that tools people already
have and know have a strong advantage, our findings indicate that cost is
not the whole story. We found several additional factors that affect what
tools will be used to make presentations (see above). To summarize the
factors:

— Speed vs. quality: How important is it that presentations be fancy
versus done quickly? Often, there are two separate production pro-
cesses: one for most presentations, using tools that optimize the process
rather than the product, operated by people possessing less domain
expertise, and another for the few fancy or unusual presentations, using
tools that optimize the product, operated by task domain experts.

— Power vs. skill: How much domain knowledge and skill about slide-
making do prospective users have? Those who have high domain skills
apparently prefer tools that stay out of their way and let them exercise
their skill. Tools that supply significant domain knowledge are mainly
for people who lack either domain skill or the time or desire to exercise
their skill (though such tools face the aforementioned cost/benefit hur-
dle).

— Interoperability: Can a tool easily take input from others? Profes-
sional slidemakers prefer using collections of tools, each of which
provides needed support for certain slidemaking activities. Such people
often use dedicated presentation programs as containers and organizers
of content produced elsewhere.

— Support for teamwork: Does the tool support people working together
on a presentation, if that is how presentations are produced at the
worksite in question? Most presentation programs assume a single user
working alone, but many presentations are created by teams, with
different people contributing different parts.

— Company policy: What tools does the company prefer, for whatever
reason, e.g., history, business relationships, price, familiarity, or stan-
dardization?

6.2 Better Task Support through Modularity and Interoperability

How might software developers provide better support for people who are
skilled in a task domain, since tools that are intended to be comprehensive
within a task domain clearly do not work well for them? Our finding that
many professional slidemakers use collections of programs in concert
suggests that the most practical approach for software developers may be

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

58 . J. A. Johnson and B. A. Nardi

to support this way of working intentionally and explicitly. That is, perhaps
software developers should provide collections of interoperable tools and
services that computer users mix and match as needed to accomplish the
goals of the moment, rather than a single tool intended to support a wide
range of tasks within a specified domain, end to end.

Modular interoperable tools and services allow not only for task differ-
ences, but also for individual user differences, whether in skill level, job
type, or personal preference. Computer workers could select and bundle
modules according to need and preference into packets that capture regu-
larities in their daily work instead of being faced with trying to use a
program having a nonoptimal bundle of services, documented by a fat
manual containing mainly irrelevant detail. Local developers [Johnson et
al. 1993; Nardi and Miller 1991] might bundle services for individuals or
groups or help end-users do that.

The need to support teamwork is a third argument for preferring a set of
modular interoperable tools and services over single tools that try to “do
everything.” With interoperable tools, each contributor to a presentation
can use the best—or favorite—tools for his or her part of the presentation;
then the work can be put together.

Interoperability is often regarded as the ability to copy data freely
between tools, but that is actually only a minimum requirement. A higher
form of interoperability is dynamic sharing of information between applica-
tions and between coworkers. Interoperability of this sort is extremely rare
in software for making slide presentations. Proposed open-document proto-
cols from computer and software vendors are intended to allow for this sort
of interoperability, but can only do so if application developers avail
themselves of the new capabilities.

Even more ambitiously, interoperability can include support for main-
taining desired relationships between separately produced parts of a pre-
sentation and support for work flow between tools and team members. Our
findings suggest, however, that slidemaking tools that were interoperable
in this way could succeed with professional slidemakers only if the relation-
ships and workflow model were user definable rather than fixed.

The idea of providing collections of interoperable software tools is not
new. Nielsen et al. [1986] alluded to it in the conclusions to their study. At
that time, the ability of application programs to exchange data with other
programs was much lower than it is today, so the most practical way of
achieving interoperability then was to put into one large program function-
ality that otherwise would be in several distinct applications (e.g., word
processing, drawing, and spreadsheet). Therefore, Nielsen et al. argued
mainly for more multiapplications. However, they quoted one of their
informants as saying:

(Software developers] have a handle on program integration but not task
integration. I want task integration. [I] don’t care about product integration
[Nielsen et al. 1986, p. 167; brackets in original].

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

User Preferences for Task-Specific versus Generic Software . 59

Explaining this, Nielsen et al. wrote:

We believe that what is relevant for professional business users is not necessar-
ily product integration but task integration. Task-integration looks at what
data and manipulations of that data match the requirements of users’ tasks.
These task requirements may or may not match the application boundaries
of. . .integrated systems [Nielsen et al. 1986, p. 167].

Fischer and Lemke [1988] reached similar conclusions. They suggested
that application software would be more usable and useful if it were
provided in the form of high-semantics construction kits (e.g., Electronic
Arts’ Pinball Construction Set™), allowing users to construct applications
as needed for specific situations. Even better, according to Fischer and
Lemke, is software that provides not only task domain components but also
domain-specific guidance in combining them. Design environments is their
term for such software.

An even earlier, albeit primitive, embodiment of the “interoperable tools”
approach is Unix. The primary user interface of the Unix operating system,
referred to as the shell, is based heavily on a simple form of interoperabil-
ity: shell users solve information-processing problems by directing streams
of data through ad hoc sequences of programs, with each program perform-
ing a specific function on the data stream. Unix can be—and has been—
criticized soundly for anarchic command naming, cryptic syntax, and
general lack of attention to principles of good user interface design [Nor-
man 1981]. Its promoters can also be faulted for attempting to foist it onto
task domains and user populations for which it was not designed (e.g.,
office information processing). However, the fact remains that it has been
enormously successful within its original target task domains (software
development and technical documentation) and users (software engineers).

What sort of interoperable tools or services might be useful for slidemak-
ing? One example is outlining. Outlining is a service that is useful in many
tasks, including slidemaking. Outlining could be selected from a set of
services and applied to the task of slidemaking, as appropriate.

6.3 Limitations of Results and Directions for Future Research

Our interest was in exploring the costs and benefits—and computer users’
perceptions thereof as manifested in their choice of tools—of task-specific
versus task-generic application software. For resource reasons, our study
focused on a particular task domain and a limited user population.
Obviously, restricting the study to slidemaking limits the generalizabil-
ity of our findings. It is perhaps less obvious how our choice of informants
limits the generalizability of our results. Though we interviewed business
and engineering professionals who create slide presentations infrequently,
as well as professional graphic artists whose primary vocation is creating
slide presentations, we did not interview nongraphic artists who create
large numbers of slide presentations (e.g., college professors) or graphic
artists who only infrequently create slide presentations. Including such

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

60 . J. A. Johnson and B. A. Nardi

informants might have helped clarify some of the findings that remain
unclear.

Despite the limitations, we feel that our findings do speak to the more
general issues raised in our working hypothesis. A focused look at the work
of real computer users in a single task domain led us to rethink our key
assumptions and to consider an alternative way of supporting end-user
application development, i.e., collections of interoperable tools and services.

Of course, the generality of the findings reported here should be vali-
dated through comparable studies in other task domains and with other
user populations. We believe that the results of the present interview study
also suggest the need for in-depth ethnographic research on how people use
software in the slidemaking and other task domains. Within the slidemak-
ing task domain, more structured—perhaps experimental—studies would
shed additional light on issues such as the tradeoff between task support
and learning cost. We hope that this article will stimulate researchers to
try to clarify the issue that our findings so successfully muddied, i.e., what
it means for application software to provide good versus poor support for its
users’ tasks. Finally, we hope that this article will stimulate software
developers to give more thought to how best to support the work of the
people who will use the software.

APPENDIX

A. QUESTIONS ADDRESSED IN INTERVIEWS

1. What is your role in producing presentation slides?
1.1 Do you produce slides yourself or do you supervise others who do it?
1.1.1 What sort of training or experience is required to do the job
you do?
1.1.2 [If supervises others] What is the skill level of your employ-
ees?
1.2 How much of your total job involves producing presentation slides?
1.3 For whom do you produce these presentation slides?
1.3.1 Who is the customer (i.e., who approves the slides)?
1.3.2 Who is the audience for the presentations?
1.4 What sort of quality level is required for the slides?
1.4.1 How important are elaborate special effects (e.g., animation,
dissolve)?
1.4.2 Who decides on appearance and quality, you or the customer?
1.4.3 Are there different kinds of presentations with different qual-
ity requirements?
1.5 Do you (your department) follow slide formatting standards?
1.5.1 How do you assure that slides adhere to those standards?
1.5.2 Does your slidemaking software help with standardization of
presentations?
2. What software do you use to create presentation slides?
2.1 Who decides what software you use for this?

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

2.2

2.3

2.4

2.5

2.6

2.7

User Preferences for Task-Specific versus Generic Software . 61

Do you use one program or a collection of them?

2.2.1 [If many] What are the different programs used for?

Do you use general-purpose drawing software or slidemaking soft-

ware?

2.3.1 Why?

What do you like about each of the programs you use?

What do you dislike about each one; what would you like to see

changed?

2.5.1 Describe some of the things you do to “work around” limita-
tions of the software.

How easy is the software for new users to learn?

2.6.1 How do they learn the software (classes, manuals, using,
asking)?

2.6.2 How did you learn it?

What other software have you used, tried, or considered for making

slides, either here or in previous jobs?

2.7.1 Why don’t you use it now?

3. What is involved in making slides?

3.1

3.2

3.3

3.4

3.5

Describe the complete process of producing a presentation, from

when you take the assignment to when to deliver it to the customer.

3.1.1 How much revision is usually required before a presentation
is considered done?

Do you usually create new presentation slides?

3.2.1 What is hard and what is easy about creating new material—
i.e., what goes quickly, and what takes time and work?

Do you reuse old slides in new presentations?

3.3.1 What is hard, and what is easy about reusing old material—
i.e., what goes quickly, and what takes time and work?

How do you (your department) organize and keep track of slides and

presentations?

3.4.1 Is each slide a separate file, or are all the slides in a
presentation together in one file?

3.4.2 Do you use directories (folders) and subdirectories (subfold-
ers) to organize your material?

3.4.3 How do you name your slide (or presentation) files?

3.4.4 Do you ever fail to find a slide you know you have?

3.4.5 How does your software hinder you in reusing material?

3.4.6 How easily can you include a single slide in several different
presentations?

What kinds of revisions are often required in the process of prepar-

ing a presentation?

3.5.1 Which are easy, and which are hard?

3.5.2 Are the same revisions easy and hard for each of the slide-
making programs you use?

3.5.3 Some specific cases we’'d like to know about:
3.5.3.1 A slide used in multiple presentations is changed.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

62 o J. A. Johnson and B. A. Nardi

3.5.3.2 A company logo or standard border must be added to
every slide in a presentation.

3.5.3.3 The order of slides in a presentation must be changed.

3.5.3.4 The round bullets throughout a presentation must be
changed to square bullets.

3.5.3.5 The font used throughout a presentation must be
changed.

3.5.3.6 Each of the points on a particular slide must be
expanded into a separate slide.

B. TABULATED INTERVIEW DATA

Table IV tabulates much of the data gathered in the interviews. It shows
the type(s) of software used by each informant (or people they supervised)
in preparing presentations. It also shows that professional slidemakers
tend to distinguish, in the software they use, between preparing “plain”
presentations and “fancy” presentations. Finally, Table IV contains an
entry for a type of slidemaking professional that our initial hypothesis
overlooked: graphics clericals (see row 2).

Abbreviations used in Table IV: presentation = pres, drawing = draw,
painting = paint, charting = chart, desktop publishing = pub, document
compiler = doccomp, animation = anim, spreadsheet = spread, database =
dbase, image processing = tmage, custom = custm.

Tabulating the interview data was neither straightforward nor totally
objective. If an informant said something like, “I used to use Program X,
but I don’t anymore,” it was not clear whether to include Program X in the
software used by the informant. Our tendency was to be inclusive: if an
informant used a particular software program for slidemaking until re-
cently, we included it; if he or she abandoned it years before, we excluded
it. On the other hand, if an informant said something like, “I've tried
Program X, but I don’t like it and don’t use it,” we did not count Program X
as being in that informant’s tool collection.

It was also not perfectly clear what work processes to tabulate as
“working in teams” versus “working alone.” In some sense, any situation in
which a nongraphic artist has a professional graphic artist produce a
presentation involves teamwork: the nonartist sketches or describes the
slides; the artist produces a first draft; the nonartist critiques the draft;
and the artist revises the presentation until it is satisfactory. In this view,
“working alone” includes only cases in which someone creates a presenta-
tion for his or her own use. However, we used a more conservative criterion,
classifying work processes as “working alone” unless multiple people were
working with slidemaking software and sharing datafiles.

If an informant said, “I use Program X, but the people I manage make
slides with Program Y,” it was not clear whether or how to tabulate
Program Y. Our judgment was that software used by slidemaking subordi-
nates should be included in the tables. For this reason, the number of users
in some of the tables exceeds the number of informants we interviewed.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

User Preferences for Task-Specific versus Generic Software

. 63

Table IV. Presentation-Making Software Used by Informants and Their Subordinates, with
Other Pertinent Data
Informant | Graphic | Empl. or Work Main SW Aux. SW Work in | Who picks
Art SKill | Freelance | Product Teams? SW?
1 pro empl fancy pres | pres, anim unknown no self
(1 mngs) | cler(s) empl plain pres | pres none no 1
2 pro empl plain pres | draw, pres pub, draw, paint, yes self
fancy pres | draw chart
(2 mngs) | pro(s) empl, free | graphics | none draw, paint, chant | yes 2
3 pro free plain pres | pres pub, draw, paint, no client
fancy pres | anim chart, image
4 pro empl pres draw chart, custm yes self
(4 mngs) | pro empl fancy pres | draw chart, custm yes 4
(4 mngs) | pro(s) empl, free | graphics none draw, chart, custm | yes 4
5 pro empl plain pres | pub, pres, draw | draw, paint, image | yes work group
fancy pres | anim
T pro free plain pres | pres paint, image, no self, client
fancy pres | anim spread
pro free pres draw, pres pub, chart no client, self
am empl pres pres paint, spread no self
T am empl plain pres | pub draw, spread no self
10 am empl plain pres | doccomp, pub | none no self
11 am emp! plain pres | pres none no self, comp
fancy pres | pub yes
12 am empl plain pres | pub, doccomp | none no self, comp
13 pro free plain pres | pres draw, pub, paint, | yes client, self
fancy pres | pub chart
14 am empl pres draw spread, dbase no self
15 pro empl plain pres | pub draw, chart, no self, comp |
fancy pres | draw spread
m pro empl pres pub, pres draw, spread yes comp, self

However, for lack of a better rule, we counted references by informants to
people they manage as one (1) user regardless of the number of people
being referred to.

Note that these tables do not reflect relative frequencies of use of the
various types of software. If an informant said that he or she sometimes
used a particular program to prepare slide presentations, no matter how
infrequently, we included it. Having not asked informants to assign rela-
tive usage weights to their slidemaking software tools, we found that we
could not objectively extract usage weightings from the interview tran-
scripts. Nonetheless, it was clear to us from the interviews that profes-
sional graphic artist informants were much less reliant on dedicated
slidemaking programs than our initial hypothesis had predicted them to be.
Thus, for example, Table IV does not indicate that, though informant 5

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

64 . J. A. Johnson and B. A. Nardi

occasionally used a dedicated presentation program, his main tool for
presentation making was a desktop publishing program.

C. TRADEMARKS

1-2-3 is a trademark of Lotus Development Corp.

Canvas is a trademark of Deneva, Inc.

Charisma is a trademark of MicroGrafx.

CricketGraph is a trademark of Computer Associates.

Corell Draw is a trademark of Corell, Inc.

DeltaGraph is a trademark of DeltaPoint, Inc.

Excel, PowerPoint, and Word are trademarks of Microsoft Corp.
Frame Maker is a trademark of Frame Technology Corp.

Harvard Graphics is a trademark of Software Publishers Corp.
Illustrator and Photoshop are trademarks of Adobe, Inc.

MacPaint, MacDraw, and MacDraw Pro are trademarks of Claris, Inc.
Macromind Director is a trademark of MacroMedia, Inc.

Persuasion and PageMaker are trademarks of Aldus Corp.

Pinball Construction Set is a trademark of Electronic Arts.

Unix is a registered trademark in the United States and other countries,
extensively licensed through X/Open Company, Ltd.

Ventura Publisher is a trademark of Xerox Corp.

Word Perfect is a trademark of Word Perfect, Inc.

ACKNOWLEDGMENTS

The research described herein was conducted while the authors were
employed at Hewlett-Packard Laboratories, Palo Alto, California. We thank
Michelle Gantt, the anthropology student intern and graphic artist who
served as the interviewer for the study and—by questioning our initial
hypothesis about who uses task-specific versus generic software—as the
primary catalyst for our conducting it. We thank Jim Miller and Craig
Zarmer, our colleagues on the ACE project, for their ideas and for com-
ments on earlier drafts of this article. We also thank Jonathan Grudin and
several anonymous reviewers for comments and suggestions that helped us
improve this article. Last but not least, we thank our informants for taking
time out of their busy schedules to educate us about their work practices.

REFERENCES

CASNER, S. 1991. A task-analytic approach to the automated design of graphic presenta-
tions. ACM Trans. Graphics, 10, 111-151.
FISCHER, G. AND LEMKE, A.C. 1988. Construction kits and design environments: Steps
toward human problem-domain communication. Hum. Comput. Interaction 3, 3, 179-222.
FISCHER, G., McCaALL, R., AND MoRCH, A. 1989. Design environments for constructive and
argumentative design. In Proceedings of the ACM Conference on Computer-Human Interac-
tion (CHI'89). ACM, New York, 269-275.

Fox, R. 1995. NewsTrack. Commun. ACM 38, 5 (May), 9.

Gourb, J., BOIES, S., AND LEwis, C. 1991. Making usable, useful, productivity-enhancing
computer applications. Commun. ACM 34, 1 (Jan.), 75-86.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

User Preferences for Task-Specific versus Generic Software . 65

HurcHins, E., HoLLaN, J., AND NoRMAN, D. 1986. Direct Manipulation Interfaces. In User
Centered System Design, D. Norman and S. Draper, Eds. Erlbaum Associates, Hillsdale, N.J.

JOHNSON, J. A, NarDpI, B. A., ZARMER, C. L., AND MILLER, J. R. 1993. ACE: Building interac-
tive graphical applications. Commun. ACM 36, 4 (Apr.), 40-55.

LEwis, C. aND OLsON, G. 1987. Can principles of cognition lower the barriers to program-
ming? In Empirical Studies of Programmers: Second Workshop. Ablex, Norwood, N.J.,
248-263.

MvYERs, B. A. 1989. User interface tools: Introduction and survey. IEEE Softw. 6, 1.

Narbi, B. A. 1993. A Small Matter of Programming: Perspectives on End User Computing.
MIT Press, Cambridge, Mass.

Narpl, B. A, Ed. 1996. Context and Consciousness: Activity Theory and Human-Computer
Interaction. MIT Press, Cambridge, Mass.

Narp1, B. A. AND MILLER, J.R. 1990. The spreadsheet interface: A basis for end-user
programming. In Proceedings of Interact’90, D. Diaper, D. Gilmore, G. Cockton, and B.
Shackel, Eds. Elsevier Science, New York.

NaRrDI, B. A. AND MILLER, J. R. 1991. Twinkling lights and nested loops: Distributed prob-
lem-solving and spreadsheet development. Int. J. Man-Machine Stud. 34, 161-184.

Narp1, B. A. AND ZARMER, C. L. 1993. Beyond models and metaphors: Visual formalisms in
user interface design. J. Visual Lang. Comput. 4, 5-33.

NIELSEN, J., MACK, R. L., BERGENDORFF, K. H., AND GRISCHKOWSKY, N. L. 1986. Integrated
software usage in the professional work environment: Evidence from questionnaires and
interviews. In Proceedings of the ACM Conference on Computer-Human Interaction (CHI'86).
ACM, New York, 162-167.

NoORMAN, D. 1981. The trouble with Unix. Datamation 27, 12 (Nov.), 139-150.

OLSEN, D., McNEILL, T., AND MITCHELL, D. 1992. Workspaces: An architecture for editing
collections of objects. In Proceedings of the ACM Conference on Computer-Human Interaction
(CHI'92). ACM, New York, 267-272.

PRIETO-D1AZ, R. 1990. Domain analysis: An introduction. Softw. Eng. Notes 15, 2 (Apr.),
47-54,

SPA. 1995. Home users: Fourth annual survey. Software Publishers Association, Mar. 14.
Reported by Internet newswire.

VLISSIDES, J. AND LINTON, M. 1990. Unidraw: A framework for building domain-specific
graphical editors. ACM Trans. Inf. Syst. 8, 3 (July), 237-268.

ZARMER, C.L. aND JoHNSON, J. A. 1990. User-interface tools: Past, present, and future
trends. Hewlett-Packard Laboratories Tech. Rep. HPL-90-20, Hewlett-Packard, Palo Alto,
Calif.

ZARMER, C. L., NARDI, B. A,, JOHNSON, J. A., AND MILLER, J. R. 1992, ACE: Zen and the art of
application building. In Proceedings of the 25th Hawaii International Conference on System
Sciences (HICSS-25) (Koloa, Hawaii, Jan. 7-10). Vol. 2. ACM, New York, 687-698.

Received April 1994; revised June 1995

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

