
~ (H1’92 May3-7, 1992

GARDENERS AND GURUS: PATTERNS OF
COOPERATION AMONG CAD USERS

Michelle Gantt
Bonnie A. Nardi

Hewlett-Packard Laboratories

Human-Computer Interaction Department

1501 Page Mill Road
palo Alto, CA 94304

Internet nardi@hplabs.hp. com
(415) 857-5121

ABSTRACT

We studied CAD system users to find out how they use the
sophisticated customization and extension facilities offered by
many CAD products. We found that users of varying levels
of expertise collaborate to customize their CAD environments
and to create programmatic extensions to their applications.
Within a group of users, there is at Ieast one local expert who
provides support for other users. We call this persona local de-
veloper. The local developer is a fellow domain expert, not a
professionrd programmer, outside technical constdtant or MIS

staff member. We found that in some CAD environments the
support role has been formalized so that local developers are
given official recognition, and time and resources to pursue
Iocal developer activities. In general, this formalization of the
locaI deveIoper role appears successful. We discuss the im-
plications of our findings for work practices and for software
design.

KEYWORDS: Cooperative work, CAD, end user program-
ming.

INTRODUCTION

Recent empirical studies of end user computing have found a
strong pattern of cooperative work among users of a variety
of software systems, including spreadsheets, word processing
programs, and Unix. Users with different levels of computer
expertise and interest work together to customize their envi-
ronments [5,15,16] and to program applications [23]. Nardi
and Miller [23] identified a continuum of three kinds of users:
end users, local developers, and professional programmers.
End users have little or no programming education and tend to
lack an intrinsic interest in computers; they are focused on their
own domain interests. Local developers are domain experts
who have acquired more advanced knowledge of computing,
and in particular, knowledge of one or more specific software
systems such as spreadsheets or CAD products. They serve as
a resource for end users, training them and developing code for
them. Programmers have a much broader, deeper knowledge

Permission to copy without fee all or part of this material IS granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and/or specific permission.

@ 1992 ACM 0-89791-513-5/92/0005-0107 1.50
10;

of computing than local developers (e.g. knowledge of compil-
ers, operating systems, languages, architectures, programming
methodologies) acquired through professional training. Pro-
grammers contribute code to the programs of end users and lo-
cal developers, and help them learn new things! Mackay [15]
and MacLean, Carter, Lovstrand and Moran [16] described a
similar continuum of expertise among the users they studied.2

In this paper we describe patterns of cooperation among users
of CAD systems. We chose an ethnographic approach so that
we could discover what CAD users are actually doing, and
what they think about what they are doing. Ethnography is
well suited to studies of collaborative work as patterns of col-
laboration extend over many users, and are richly nttanced in
away that cannot be replicated in the artificial environment of
the laboratory. In the everyday world, people work out ways
to solve problems that accommodate and take advantage of
the varying expertise and interests of group members. Such
methods of work will not emerge under the short time frame
and controlled conditions of laboratory experiments, but can
be studied naturalistically.

The objectives of this paper are (1) to document the nature of
cooperative work among CAD users, as further empirical evi-
dence of the pattern of collaborative end user computing prac-
tices reported in other studies (2) to highlight the importance
of the formalization of the local developer role that we discov-
ered in some of the groups we studie& and (3) to discuss the
implications of the cooperative nature of end user application
development for work practices and software design.

Many recent studies have suggested that the introduction of
computers into offices and factories does not correlate with in-
creased productivity [3,10,12,30,35]. One key reason is that
computers are not being used to their best advantage because
we are still trying to discover just how to do that [3,10,12].
We believe that human-computer interaction researchers have
a contribution to make to this discovery process as our con-

1~em amend“~emWhodo not becomelocal developersbut Whodo be-

comequite sophisticatedcomputerusers. They are in a minority. The locat
developerrole would not haveevolvedif they werethe Commoncsse.

2For lmal dev~[~perMackayused the term iramkator and Mad-em et ~.

the term tinkerer.

7

~ [HI ’92 May3-7, 1992

cems encompass both work practices and technology, which
must be considered together as we learn to utilize technology
more effectively. Here we focus specifically on the coopera-
tive nature of end user computing. We believe that a descrip-
tion of how users actually get applications written will inform
our understanding of how to better organize and manage work
practices, and how to better design computer products and re-
search prototypes.

Our study of CAD use partly confirms what other studies
have found, i.e. that end users collaborate with more expe-
rienced users to create applications. As described in detail in
[5,15,16,23], the range of applications end users can create is
much greater than it would be in the absence of collaboration
for two reasons: end users are learning from more sophisti-
cated users, and they are getting code from them. This sharing
of knowledge and code among a community of cooperating
users is a mainstay of end user computing.

However, our study found a significant difference in the pattern
of collaboration among CAD users compared with users in the
previously mentioned studies: the role of local developer has
changed from an informal, ad hoc, unsupported position to a
formal or semi-formal role in some organizations using CAD.
Managers recognizing the benefits of having a local developer
in place have begun to support the role. In the CAD world, lo-
cal developers are taking on many of the functions usually as-
signed to a customer support organization or MIS department.
Because of the tremendous backlog in such organizations, they
may not deal with users’ problems in a timely manner (or may
not deal with them at all). In contrast, local developers serve
smaller, more localized constituencies, and they already know
the domain and associated problems. Formal support of local
developers is exactly what Mackay [15], based on her study of
Unix users, recommended local developers should be given
the time and resources to provide computer support to their
fellow domain experts. In this paper we will describe the for-
malized and semi-formalized local developer roles in some of
the organizations we studied, and evaluate the advantages and
problems of acquiring local developers from the ranks of do-
main experts.

The “gardeners and gurus” of our paper are terms from the ar-

got of one large corporation we studied where local developer
roles have become formal or semi-formal (depending on the
needs of the division or department within the corporation).
Local developers supporting mechanical engineers in the cor-
poration are called gardeners, and those in electrical engineer-
ing are gurus. The term gardener comes from the corporation’s
attempt to “grow productivity” by making a gardener respon-
sible for nurturing fellow employees and providing support so
that they can perform as effectively as possible. Gardeners and
gurus are a special case of led developer. They are distinct
from other local developers in that they are given recognition,
time, and resources for pursuing local developer activities. In
this paper, we will use “gardeners” as a convenient cover term
for gardeners and gurus and whatever else they may be called

in other organizations.3 Where our comments apply to either

3A recent I~~W~rld afii~e entitled “Nurturing the ~odc” describkrg var-

ious support arrangements for PC users featured a cartoon showing the PC

Manager as a mother hen surrounded by chicks representing different kinds of

local developers or gardeners, we use “local developer” as the
more general term.

There are a number of studies of CAD use, including studies
of CAD tasks from a cognitive perspective, the management
of CAD users, and ways to use CAD systems more produc-
tively. Unman et al. [33,34], Dillon and Sweeney [7], Cuomo
and Sharit [6], and Pikaar [27] studied aspects of the cogni-
tive processes of individual CAD users; for example, Dillon
and Sweeney [7] compared the mechanical engineering design
process with that of designers using traditional drawing board
techniques. Petre and Green [26] compared the cognitive effi-
cienc y of graphical vs. textual notation in electrical engineer-
ing design. Sinclair, Siemieniuch and John [31] and Badham
[1] described the work process, and design and drafting roles
in CAD environments. Maver [20] and Krouse, Mills, Beekert
and Dvorak [14] made recommendations for managing CAD
environments to maximize user acceptance and productivity.
Perzanowski [25] provided a primer of CAD specialization,
describing how to write macros, and other aspects of CAD
use. Sebbom described the use of customization for automat-
ing the work process [29]. Majchrzak, Chang, Barfteld, Eberts
and Salvendy [17] discussed the technical and user interface
aspects of CAD, and the management of CAD users. Brooks
and Wells [4] and Manske and Wolf[18] also studied manage-
ment of CAD users, noting that formalizing the role of local
developer can be a valuable support for end users, though they
did not elaborate further. Graham [13] advocated developing a
network of experts, each specializing in a different CAD tool,
to increase productivity. We did not find any in-depth studies
of interactions among different kinds of CAD users, or of how
users cooperate in building applications.

CAD SYSTEMS

What exactly do we mean by CAD? Computer-aided design
(CAD) began in the mid-1960s. Sutherland’s SKETCHPAD
[32], created at MIT in 1963, is credited with being the first
(prototypical) CAD system, and with providing the impetus
for future development [17]. Researchers at large automotive
and aircraft companies such as General Motors, Lockheed, and
Boeing began developing proprietary mainframe-based sys-
tems. Because these early systems were very expensive, their
use was limited to those industries that could afford the nec-
essary capital investment. The development of minicomputer
technology made CAD commercially viable. In the late 1960s,
electrical engineers began to use CAD as design and drafting
aids for printed circuit board production. During the 1970s,
CAD moved into architecture and mechanical and civil en-
gineering. Today CAD has become a standard tool in all of
these industries, and a wide variety of products are in use. (See
[9,1 1,17] for the history of CAD development.) CAD systems

users (novices hatching out of shells, demanding users fighting over womrs,

etc.) [28]. While we doubt that “Mother Hen” wilt emerge as the next term

for locat developer, the metaphor does highlight the problem of supporting

users. Another use of the term gardening comes from the Soviet Union. In
an article in the July 1, 1991 San Jose Mercury Ne ws it is reported that two

Soviet management consultants advocate that managers must be persuaded to

stop thinking like “mechanics” and start thinking like “gardeners” who want to

cultivate ncw and improved organizations. It is interesting to see metaphors

of the natural world (gardeners, chickens) pressed into service in technicat

environments.

108

T (HI ’92 May3-7, 1992

run on workstations, PCs, and Macintoshes. CAD users have a
relatively sophisticated computing environment (at least com-
pared with many end users who are still in the world of stan-
dalone PCs and floppy disks). A typical CAD workstation
includes a large color monitor, a drawing tablet with stylus
and/or mouse, and often network access to other CAD users,
printers and plotters, library file servers, and backup systems.

CAD packages are, at their most basic level, drawing and
drafting aids. What makes them different from simple draw-
ing packages is that behind each graphical representation is
a dataset that enables the program to perform a variety of
functions such as autodimensioning$ creating wireframes and

solid models,s and generating parts lists.

Many CAD programsG are specialized by the manufacturer
specifically for a particular industry such as architecture, elec-
trical engineering, mechanical engineering, or site planning.
Other programs, such as AutoCAD, have open environments
that can be specialized by users to meet the needs of a wide
variety of task domains.

Some CAD programs perform specific tasks within a particu-
lar domain. For example, within electrical engineering, there
are several taskw schematic capture, simulation, and physi-
cal lrtyout/design. A few systems such as Chipbuster manage
all of these processes, but usually each is handled by a sepa-
rate software package? There are also CAD systems that pro-
vide frameworks that integrate such task-specific applicatiortx
for example, ASG runs with AutoCAD to automate the entire
axchitcctural design process. Traditionally, many of the non-
&awing processes (e.g. simulation) came under the rubric of
computer-aided engineering, but the line between compttter-
rrided design, engineering and manufacture (CAD, CAE and

dA~tO{lrn~SiOn@ isplacing d~ension lies and rm’mspondmg nUmeri-

eal measurements after two points are specified.
5A wi~fme is a view of each surface of an objeet incorporated into one

3D view. A wireframe model contains no information on the eotttent of an

object that would be needed to compute, for example, volume, mass or stress.

In solid modeflitrg, such information is available because the inside or outside

of an object eatt be determined [see 17].
6pr~u~ ~r~,t ~d ~admark notification for the CAD products we m-

referto in thk paper arc given here: Abacus is a product of Hibbkt, Karls-

son, Sorensen. Adobe Illustrator and PhotoShop are registered trademarks

of Adobe Systems Inc. ADS, AutoCAD, AutoLISP and AutoShade are regis-

tered trademarks of Autodesk, Inc. ASG is a trademark of Archsoft Group.

Cadence, SPICE and Verilog are trademarks of Cadence Design Systems.

Ctday is a product of Crday Systems Inc. Chipbuster is an internal Hewlett-

Packard product. DCS and PCDS are trademarks of Hewlett-Packard. Design

Architect is a trademark of Mentor Graphics Corporation. Dynaperspcctive is

a trademark of Dynaware Corp. FlexiCAD is a trademark of Amiable Tech-

nologies, Inc. HIM) is a trademark of Genrad. HP ME 10 and HP ME30 arc

products of Hewlett-Packard. 20/20 is a registered trademark of Home Depot.

KST,ArchT2 and Arch’f2i3D are trademarks of KativTeehnologies Inc. Mac-

intosh is a registered trademark of Apple Computer Inc. Mentor Graphics is a

registered trademark of Mentor Graphics Corporation. ModelShop is a trade-

mark of Paraeomp. OrCAD is a registered trademark of OrCAD. Patratt is a

registered trademark of PDA Engineering. Pro/Engineer is a registered trade-
mark of Parametric Technology Corp. Synopsys is a registered trademark of

SynoWys Inc. Unigraphics is a trademark of McDonnell Douglas. Veflum is

a trademark of Ashlar Jnc. VersaCad is a registered trademark of VersaCad.

Vivid is shareware. Unix is a trademark of AT&T.
Tpor example, Mentor>s DesignArchitect is used fOrschematic caPtur%

PCDS for printed circuit board layout, and Verilog for digital logic simulation

of integrated circuits.

CAM) is becoming increasingly fuzzy as software companies
integrate their tools to support the entire process, from design
to manufacture.

METHODOLOGY

To study CAD use, we conducted in-depth interviews with 24
informants (21 users and 3 managers), collected and analyzed
informants’ CAD artifacts (printouts of macro programs, de-
signs, etc.) and studied and used a CAD system (HP ME30).
Informants were found through an informal process of referral.
Interviews were tape-recorded in informants’ offices or work
settings.s A set of open-ended questions was asked of each in-
formant in the course of the interview (see Appendix). We dis-
cussed the users’ tasks and how they used CAD to accomplish
them, and how CAD fit into the overall worldlow. The order
of the questions varied depending on the course of the conver-
sation. Additional conversational leads were followed as they
arose. Informants showed us examples of their work on-screen
and in paper form. Approximately 325 pages of transcription
were obtained from the interviews.

Our informants included architects, mechanical engineers,
electrical engineers, and industrial designers. They came from
seven companies ranging from a three-person architecture de-
sign office to Fortune 100 companies. Most informants had
college degrees and alI had at least two years of college. Most
had been using CAD for at least five years. Informants’ com-
puter experience ranged from those who were completely self-
taught to one engineer with a degree in computer science (and
a degree in electrical engineering). Most informants had taken
some formal programming or product classes. Many had also
put in long hours studying on their own.

CAD software varies extensively by industry.”In our study in-
formants discussed many different CAD systems (all of which
are named in foomote 6). The numerous software products
discussed reflect the fact that often an individual uses several
different products, and that users sometimes referred to prod-
ucts they had used on previous projects.

We introduce seven informants in some detail to give a more
concrete flavor of CAD use and CAD users. Informant names
used here are fictitious. Verbatim segments from the inter-
views of these informants will be given to illustrate aspects
of CAD use.

Ben is an electrical engineer/designer who works in the
R & D laboratory of a large corporation. He has a BS
in physics and an MS in electrical engineering. Ben is

a self-taught programmer, with no formal programming
education. He is a local developer and provides support
to twelve people.

Steve is an electrical engineer at a small computer com-
pany. He is working on the design of the company’s
product, which is not on the market yet, He has degrees
in electrical engineering and computer science. Steve is
a local developer,

8~e ~kwiews wem conducted by the fi~t author.

109

IT [HI ’92 M(ly3-7, 1992

0 Rick is the CAD administrator (or “gardener”) for a

medium-sized architecture firm. His formal education
includes BS and MS degrees in architecture. He has
taken many programming classes. He and another sys-
tem administrator support fort y users, including ten
CAD users.

● James and Carol are mechanical engineering produc-
tion drafters for a large corporation. They support
the production engineers in their division. Both have
drafting degrees. James has taken many programming
classes and is very interested in computers. He has taken
on a semi-formal gardener position that includes over-
seeing the specializations done for a group of 100. In ad-
dition, James provides one-on-one support to five people
in his group. Carol is an end user. She has no program-
ming experience and does no specialization.

● Mark is the gardener for a medium-sized mechanical

and industrial design firm. He began working as a me-
chanical engineering drafter fourteen years ago and was
the first person to begin specializing the CAD system
when his group began using computers. He has taken
a few Unix classes but is primarily self-taught. He
also maintains the office’s other computers (used for
databases and word processing) for forty-five engineers.

● Warren is an electrical engineer in a research and devel-
opment group. He has taken many programming classes
and studied extensively on his own. He is a full-time
“guru” supporting seven engineers.

PAlTERNS OF COOPERATION AMONG CAD USERS

In our study, we found that CAD system users follow the gen-
eral pattern of collaborative customization and application de-
velopment found in other studies [5,15,16,23]. CAD users
cooperate both to customize their environments (as Mackay
[15] found among Unix users) and to program applications (as
Nardi and Miller [23] found among spreadsheet users). Two
interesting differences from previous studies emerged: (1) the
general level of computer sophistication is higher among CAD
users such that professional programmers are rarely involved
in the collaboration process; and (2) the role of the heal de-
veloper has been formalized in some cases, with institutional
recognition and support accorded the activities of local devel-
opers. We will describe general patterns of cooperation among
CAD system users, and then discuss the implications of these
patterns for supporting end user application development.

Customizing and Programming in CAD Systems

To better explain how CAD users cooperate, we brietly de-
scribe the kinds of specializations CAD users make to cus-
tomize and extend their systems.

might want to create a circle with the centerlines automatically
drawn in, and add the new circle to a menu. The user would
write a macro, assembling the appropriate circle-creating com-
mands and line-creating commands, specifying certain paratn-
eters, and then linking them to a menu slot.

The most complex form of specialization requires writing pro-
grams in languages such as C or AutoLISP,1° writing Unix
shell scripts, or writing programs in the complex macro lan-
guages of some products. Such programming is required, for
example, to perform calculations needed for CAD applications
(e.g. calculating part placement) or to link a CAD application
to other programs (for example, users might need enhanced
plotting utilities or links to simulation or database programs).

CAD macros may be called from within a programming lan-
guage such as AutoLISP. For example, in an architectural ap-
plication, when a symbol (such as a door or window) is se-
lected from a menu, an AutoLISP function may call a macro
that queries the user for values for height and width, which are
then used to size the symbol before the user places it in the
drawing.

End Users

Of the seven end users in our study, four had done no cus-
tomization or programming. One was not allowed to do any, as
his manager insisted on maintaining established conventions.
The other three preferred not to specialize, and because they
had local developers or gardeners supporting them, they did
not have to. Three end users made simple specializations, as
described below.

An end user’s first efforts at specialization usually involve cus-
tomizing the CAD environment by creating keyboard macros
and/or changing parameter values within existing macros.
These macros may come from many sources: from the soft-
ware package itself, from macro sets already created for a par-
ticular division, department, or site within a corporation, from
macros created by fellow users (other end users as well as lo-
cal developers), and from macros published in magazines and
electronic bulletin boards.

Like spreadsheet end users [23], CAD end users generally
avoid manuals. They work by: (1) editing existing macros;
(2) using existing macros as templates; (3) learning new pro-
gram features by asking other end users and local developers
how to do new things; and (4) asking others, especially local
developers, for help in debugging macros.

As was found with spreadsheet users [23], end users of CAD
systems tend to be focused on the domain and the task at hand,
rather than showing an intrinsic interest in computers. Carol,
one of the users who did not do any specializing, explains her
focus on drafting skills:

Simple customizations include changing the color of a menu,
the location of a menu item, line widths and colors, draw-
ing size, and so on. Such customizations are made by edit-
ing parameters in macros.g A more elaborate customization
might involve writing a new macro. For example, the user

such as loops and conditionals. The complexit y of the macro languages varies

by produce some are quite simple, and others approach the functionality of

conventional programming languages. Macros are organized into text files as

with conventional programming languages.
lOAu@LIsp is a subset of XLISP and Common LISP, with some additionat

functiorts to support design tasks.

gMmy CAD “macro” languages are programming langUageSWith featUreS

110

V CHI’92 May3-7, 1992

Carol: And it does seem like probably just be-
cause of different personalities, we all sort of have
our area of expertise that when a certain job comes
in, [we can say], “Oh, Harry would be good for

this” because technical illustration is really his
high point . . .

Interviewer: What’s yours?

Carol: Ummm, I think I’m very good at drafting
skills; I know what those views should be, where
they should be placed, and I think I’m very good
at being a checker on all the specs on the drawing
– that when this goes into production, we won’t
have to scrap parts, we won’t have to bring it back
for revision after we’ve gone through with the fi-
nal tooth and comb. And that’s what I enjoy about
it . . . I tackle it like a puzzle, I want to comb ev-
erything out and cover every aspect of it and then
know that . . . everything’s perfect. I like that part.
And like I said, James really likes the computer
side of it and, “What can I get this thing to do?”

Interviewer: Yeah, “What can I make it do next!”
Well, and by not having to worry about the in-
tegrity of your lines, you can spend more time
checking the integrity of the specs. . . . So...

Carol: So the content . . . is the main focus.

Rick, a gardener, summarized his role in terms of end users’
focus on “content “: “That’s why I’m here, because I know that
when these guys are designing, they just want to design. They
don’t want to have to look at a manual, they don’t want to have
to... get into any of that.”

Local Developer

In the CAD world, local developers write the macros, pro-
grams, and shell scripts that are needed for many applications,
but that are beyond the scope of end users’ interests and abil-
ities. End users rely on the output of local developers and in-
corporate their macro, program, and shell script files into their
own environments.

Local developers also help end users write, complete, and de-
bug macros. For example, two engineers at a mechanical en-
gineering consulting firm wanted a macro that could create a
parabola, a function that the firm’s CAD system did not in-
clude. They did not know how to write macros, and the lo-
cal developer did not know the math behind parabola creation.
They worked together, each adding their particular expertise,
to create the macro for drawing parabolas:

Mark: Two women were dealing with a lens for
a lamp and they wanted to . . . be able to define a
parabola easily, and they were doing it somewhat
laboriously. As it turned out, the ellipse command
that is the standard ME1O command is a very com-
plex macro that has you defining the major axis;
the minor axis, and then it uses the spline com-
mand and repeats with all of the points. It’s sort
of a left-brain, right-brain thing. I can’t explain
it. I understand [it] when I’m writing it. So I was

able to take that and simplify it greatly and make
a parabola macro out of it... So, by just looking
in a standard engineering book, we were able to
take the math and I knew the [macro] language,
they knew the math, and they just told me how
we were supposed to manipulate the numbers that
we got out of it.

In our study, the eight local developers (informal local devel-
opers, not gardeners) among our informants evolved from end
users; they were not hired from the outside. They grew into the
position because they started specializing on their own initia-
tive, usually out of frustration with the existing software, and
because they got interested in seeing how far they could push
the software.

Ben explains how he got to be a local developem

Interviewe~ You mentioned there were two rea-
sons why you customize so much: one is because
it’s so easy [using Chipbuster], and I don’t think
we actually got to the other one . . .

Ben: The other was aptitude, interest, frustration.
I know it can be done, therefore I must.

Interviewer: So how did YOU learn to write
[macros] - the manuals?

Ben: There’s a tutorial manual, but mostly it’s by
learning from examples of how do people do simi-
lar things Very often what I want to do is tweak

one of these existing commands so it does some-
tidng a little differently . . .

Local developers evince a higher level of interest than end
users in acquiring computer expertise. They are willing to
wrestle with software and with manuals to achieve their aim:

Rick: . . . lJmcal developers] tend to be hackers:
“I don’t read manuals, I just start a program and
say, ‘Ah, let’s see what it does! Oh, I have this
other package that does the same thing.’” Then
you look and see how it does it, and then you get
stumped, and then you go look in the manual for
reference. And you know in an afternoon you can
figure out everything about a package. That’s usu-
ally what I do.

For macro writing, local developers generally use manuals as
a reference when they get stuck, or if they are the first one
at a site creating specializations. Many informants spoke ill
of manuals, as though they were necessary evils (we return
to manuals in the Discussion section). Local developers do-
ing complex programming in C, AutoLISP, or other languages
use manuals for learning those languages – indeed there seems
little alternative, as it is not possible in conventional program-
ming to rely on editing existing code and/or pure experimen-
tation, as one can for simpler specializations.

These findings about the activities and interests of local devel-
opers in CAD are consistent with reports of local developers

111

37 [HI ’92 Mrrv?.7 1009

in other domains [15,16,23]. The main difference we found
in CAD is that local developers show considerably more com-
puter sophistication than their spreadsheet counte~arts (and,
we believe, the users in [15,16]). While local developers of
spreadsheets generally work within the macro language (and
other specialized aspects of spreadsheets such as facilities to
create fancy charts and graphs, or new formats for present-
ing cell values), local developers in CAD go beyond that level
by writing in general programming languages or the complex
macro languages of some CAD products, creating shell scripts,
and becoming knowledgeable about operating systems. When
spreadsheet users need to link to other programs, write com-
plex macros, or do similarly advanced things, they typically
call in professional programmers (e.g. from a customer sup-

port organization). In the CAD world, a class of users who are
not professional programmers, but who come from the ranks
of domain experts, have taken on such tasks themselves. It is as
though the level of computer sophistication distributed across
the different tinds of users has shifted Up a level, popping pro-
grammers off the end.11 In the Discussion section we explore
the implications of this situation.

Gardeners and Gurus: A Special Case of Local Developer

One of the main findings of our study is that the informal po-
sition of local developer has evolved into a formal or semi-
formal position in some organizations. In three of the seven
companies we studied, gardeners were present. We inter-
viewed six gardeners. As managers begin to notice the time
and effort being expended by local developers - and to no-
tice the benefits of local developer activities- they realize that
formalizing the position can increase user productivity. In the
semi-formal situation, local developers continue with their lo-
cal developer tasks (as well as their regular duties), but they
are at least now given recognition, appreciation, and possibly
resources for the functions being performed. When the local
developer position becomes fully formalized, the local devel-
oper is given a new job title, and time and resources to pursue
local developer activities, usually full-time. Managers benefit
from recognizing the local developer role in that there is now
someone who can officially be relied upon to help end users,
and to maintain standardization of the macros and programs
they use.

What exactly do gardeners do that is different from informal
local developers? In addition to performing traditional local
developer duties, gardeners are responsible for writing and dis-
seminating standard macros and programs at the corporate, di-
vision, or department level, and for researching and providing
new tools to end users. The macros and programs they write
may originate from their own observations of what is needed,
or they may be created in response to user requests for certain
capabilities, or requests from management. Sometimes a gar-
dener sees a macro or program a user has written that looks
useful for the whole group. The gardener takes the user’s tile,
tests the code, modifies it if necessary, and then disseminates
it to the rest of the group. Gardeners are always on the lookout
for tools to enhance the group’s productivity.

1lPrOfe~SiOnalprogrammers are used to write proprietary CAD systems.

We did not study any such systems.

James, a drafter who has become a gardener, describes a gar-
dener’s activities:

James: The gardener has to have a good work-
ing knowledge of Unix . . . Because your IT [Infor-
mation Technology] group is only going to know
how to do the administration-type part. They’re
not going to know the ME30 part. Your end users
are only going to know the ME30 part and they’re
not going to know the systems part. So a gar-
dener is like a cross between both worlds. And
he’s got to be able to communicate what IT is try-
ing to do with the standardized configurations and
hardware ordering, and he’s also got to be able to

speak the language of the end user who’s sitting
there saying, “I’m unproductive and I need to be
productive real fast.” . . . So, it’s a juggling act...

As James’s comments show, a gardener has both domain and
computer knowledge. James has educated himself through
programming classes and self-study to the point where he
can handle the Unix and HP ME30 problems effectively. He
has the drafting background to understand domain experrs’
problems and frustrations. James is effective with two con-
stituencies – the systems administrators and the domain ex-
perts. Given appropriate tools such as CAD products, it seems
that being a good gardener is generally easier if one starts on
the domain side and acquires the necessary computer exper-
tise, rather than starting on the computer side and trying to ac-
quire a working knowledge of a domain. A gardener who is
a domain expert need learn only a subset of computer science
– that which applies to the specific jobs to be done within a
domain. It would be more difficult for a computer specialist
to acquire the understandings that accrue over time to a do-
main expert. Such understandings involving workflow, group
work practices, and the problem areas and frustrations of the

job are important to the gardener role, and are acquired over
time, through the experience of actually doing the job.

In our study we found that informal local developers may co-
exist with gardeners in large organizations. In this situation
gardeners take on the standardization and system maintenance
tasks, and local developers tend to provide the one-on-one sup-
port to end users. There is potential here for a natural progres-
sion for some local developers to eventuall y become gardeners
when gardeners leave or move within the organization.

DISCUSSION

Forester [10] notes that there is a “new wave of skepticism” re-
garding the productivity benefits of automation. Many studies
suggest that the introduction of computers into offices and fac-
tories has not generally correlated with increased productivity
([3,10,12,30,35]). Forester calls this the “productivitypuzzle.”
There are many complex reasons why automation has not pro-
duced the expected productivity gains,12 but a key piece of the
puzzle is that our work practices and technology have not yet

tz~e puz~ehasrminypieces,includingsomethathavenothbrgwhatsoever
to do with technology.Productivity is difficult to measure.A net declinein
productivity can occur when countervailing forces (e.g. tie need for increased

legat and personnel staff to monitor government regulations and employee en-

titlements) depress productivity more than automation, which is contributing

112

~ CHI’92 May3-7, 1992

evolved to the point where we can take full advantage of the
potential benefits of automation [3,12]. Given the short his-
tory of computing this is not surprising, but it is time for us to
take a careful look at the insufficiently evolved social and tech-
nical bases of our present computing practices, and try to see
where we can do better. Our findings on the cooperative nature
of CAD use have practical implications in terms of both work
practices and software design. We will argue that (1) despite a
few problems, managers will be well served by growing local
developers into gardeners; and (2) software companies design-
ing new products or enhancing existing products should con-
sider how software is actually used-by groups of cooperating
users with different levels of computer expertise and interest.

Cultivating Gardeners

Our study supports Mackay’s contention [15] that the activi-
ties of local developers should be recognized and promoted.
In the organizations that we studied in which gardeners have
become formal or semi-formal positions, our assessment is that
the benefits fm outweigh the costs. End users are comfortable
with CAD software because they are assured assistance in all
aspects of CAD use - whether they are writing macros, learn-
ing new tools, or keeping abreast of the latest developments
in CAD. Gardeners – who enjoy tinkering with computers -
are given oflicial leave to do so. Their communication talents
are engaged as they provide an important bridge between sys-
tem administrators on the one side and domain experts on the
other, as well as communicating with users as they help them
in debugging, learning new capabilities, and so forth. A gar-
dener can save time and money by making it unnecessary for
users to spend their time re-inventing the wheel (creating re-
dundant macros and programs); instead, the gardener offers
standard versions of these resources to the entire group, Em-
ployees can be more productive because they are concentrating

on their domain-related tasks. Establishing a gardener creates
a finer-grained division of labor among software users that in-
creases efficiency and motivation because it is firmly grounded
in users’ interests and abilities.

An important benefit of gardening is that managers can feel
confident that the standardization and integrity of the macros,
programs, and data used by their staffs wi~ be maintained.
Many managers and MIS personnel are made somewhat ner-
vous by the whole notion of end user computing because the
potentiaJ for chaos is real: data can disappear, users may waste
time managing their systems instead of doing their work, and
esoteric, personalistic specialization can reduce the utility of
the programs developed by end users (see [24]). With a gar-
dener in place these concerns can be dealt with. It is the gar-
dener’s job to maintain standards, and to offer users standard
programs that they can use to get their work done. A gardener
is someone between management and users, and is trusted by
both. Because gardeners are fellow domain experts and not
outsiders who lack understanding of the everyday patterns of
work and group interaction, gardeners are more likely to be
effective in dealing with the group’s concerns. They. can in
fact anticipate these concerns and handle them proactwely in
away that is impossible for outsiders such as systems analysts

to productivity, can increase it. But even taking these factors in account, we

do seem to be underutiUzing our technology [3].

or MIS personnel.

A problem with formalizing the local developer role that we
found is that not all managers recognize the benefits of having
a “productivity” person on board. They may feel that this is
a waste of a person who could be working to “contribute to
the product.” Where a higher level of management mandates
a gardener, the lower-level manager may feel that he or she is
less effective and cannot utilize available resources in the best
possible way (see [4]). When this happens, at a minimum it
would seem useful for managers to evaluate whether a project
really does have enough resources. It may be that a manager
has not thought through the benefits of including productivity
person in the group, or that the manager is truly in a situation
of insufficient resources. Adding a gardener to a group will in-
volve some kind of economic analysis to determine just when
the shifting of resources really makes sense. An indication of
the need for a gardener is the situation in which a local de-
veloper is devoting considerable time to group support activi-
ties, without official recognition and support. Experimentation
with the gardener role will undoubtedly be necessary to make
it fit the needs of the individual group. Some groups may feel
the need for a full-time, fully formal gardener, while others can
get along with a semi-formal, part-time person.

Another problem with gardening is that there is not always
a person with the right combination of technical and social
skills available to assume the job. A person who is technically
skilled but uninterested in intensive interpersonal interaction
may not have much of a green thumb when it comes to help-
ing other users. By the same token, a person without sufficient
technical skill would not bean effective gardener. In our study
we found a somewhat reluctant local developer, Steve, who
typifies at least part of the problem of finding the right mix of
skills. Steve is a highly technically skilled electrical engineer,
He and another engineer work on a project where they are cre-
ating complex simulations. Some of the other teams within the
company are doing similar simulations, and, instead of learn-
ing how to program the simulation themselves, they ask Steve
and his partner to help them. Steve’s ambivalence about act-
ing in a support role comes through in the following only half-
humorous exchange

Interviewe~ So you guys are sort of the experts?

Steve: We’re supposed to be, but...

Interviewer: (laughing) But you’re not really?
Well, do people come and ask you for help?

Steve: (laughing) Well, the thing is, I’m no
smarter than any of those guys and . . . we try not
to answer their questions.

Interviewer: So you don’t like to share what
you’ve done?

Steve: No, no, we will help. It depends on the
time . . .

How do organizations cultivate gardeners? The right mix of
skHls is important, as the above example illustrates. A gar-
dener cannot be randomly chosen out of a group of users;
there must be genuine interest and enjoyment in assisting less

113

v CHI’92 May3-7, 1992

knowledgeable users on the one hand, and the desire to learn
one’s way around the operating system and a programming
language, on the other hand. Brooks and Wells [4] noted that
when users are learning anew system in a training class, often
one person stands out in interest and ability, and can be iden-
tified fairly early as a potential local expert. More generally
speaking, their point is well taken rather than selecting some-
one to be a gardener at the introduction of a new system, it is
better to wait until users have had some exposure to the system,
looking for those who gravitate naturally toward its use.

The results of our study indicate that another factor that con-
tributes to gardeners’ effectiveness is that they come from the
rank and file they know the domain, the users, the fiMra-
tions and problems. The need to expend great effort translating
domain knowledge to computer experts is avoided. Garden-
ers who are domain experts have “been there before” – and,
as we saw with James, they show concern and empathy for
their users. They know how it feels to be frustrated and unpro-
ductive because of software or hardware limitations. This is a
considerable advantage CAD users work within a very chal-
Iengingenvironment – design and manufacturing processes are
changing, deadlines are getting shorter as managers scramble
to reduce time to market [2], and the software itself is quite
sophisticated, and constantly changing.

All the gardeners in our study had started out as domain ex-
pert/end users. Manske and Wolf [18] reported that in the or-
ganizations in Germany that they studied, the CAD adminis-
trator was a mechanical drafter with computer expertise, but
not design expertise, hired from the outside. They did not pro-
vide an evaluation of how well this arrangement works, but it
would be interesting to know more about the exact functions
of such CAD administrators, and to compare them with their
gardener counterparts.

A problem that Mackay reported in her study of Unix cus-
tomization [15] was that the local developers (or translators
as she called them) often were not as knowledgeable about
computers as would have been desirable, and as a result, they
sometimes distributed buggy code throughout the organiza-
tion. We did not find this to be a problem among the CAD
local developers/gardeners we studied because their level of
computer expertise was high, and they were able to meet the
technical challenges. While CAD users may typically start out
with an advantage in having a good “technical” background,
users in other fields can strive to attain a high level of com-
puter competence through training and studying on their own.
(Indeed, many of our CAD users had taken programming and
product classes, and had devoted a great deal of time to self-
study.) Cultivating gardeners should involve making the time
and money available for such training and study. More gen-
erally, solving the problem of distributing quality code means
supporting the local developer role in a formal way, to ensure
that adequate time is devoted to testing and debugging code to
be given out to the group.

If an organization can manage to train gardeners to a high
enough standard, the need for professional programmers
largely disappears, at least with respect to the well-designed
commercially available products that support end user comput-

ing, such as CAD systems. In our study we found no instance
of users resorting to programmers for assistance in specializing
their CAD software. When macros and progmms are written
by gardeners, it is with group use in mind (so idiosyncratic
code is not produced), and with a gcmd command of the do-
main and the end users’ concerns. In Mackay’s study, the Unix
customizations were written by professional programmers for
their own use, and the “translating” needed before end users
could make use of the customizations was considerable. Of
course that was a different setting, and the comparison can-
not be stretched too far,13 but the point is that gardeners can
produce code from the outset that is intended for group use,
and, most importantly, with a very clear picture in mind of the
group’s needs and preferences.

While we believe that a major strength of gardeners is their
origin as domain experts, we can also see a potential prob-
lem in this arrangement. Over time, fhll-time gardeners may
lose touch with the domain side of gardening as their activi-
ties come to be defined purely in terms of support. The most
effective gardeners will make a special effort to keep up with
advances in their field, and to be cognizant of the changing
work practices in which they themselves are not directly par-

ticipating. Some gardeners may want to rotate out of gardening
periodically to renew and update their domain knowledge.

Another of Mackay’s recommendations was that local devel-
opers and programmers should supply end users with extensive
examples so that they do not have to start from scratch [15]. As
we have described, the users in our study typically had a rich
body of macros from which to choose to begin their customiza-
tions and programs. This worked well, and we think that an im-
portant aspect of gardening is providing such examples. How-
ever, two qualifications to an enthusiasm for examples are in
order. First, examples seem to work best when they are in a
language that end users can understand well, e.g. for CAD
end users, the macro language. It will not do to overload peo-
ple with elaborate examples in complex languages – the pres-
ence of examples alone is not enough (see [8]), Second, we
noticed that what the less experienced CAD users were doing
with examples was simply changing parameter values. This
suggests that examples should be set up so that much can be
accomplished by making such changes. The use of examples –
at least for beginning users – becomes a simple form-filling ex-
ercise, not an attempt to replicate functionality involving com-
plicated datatypes, control structures, and so on. MacLean et
al. [16] followed this rule to good effect in their “Buttons”
prototype.

Cooperative Work and Software Design

There are lessons to be learned from the study of collaboration
among CAD users that cart be applied to software design as
well as to work practices. In doing this study, we were sur-
prised at the level of computer sophistication attained by the
local developers and gardeners we talked to – which was gen-
erally higher than that of the spreadsheet local developers we
studied [23], as we have described. It is important for soft-
ware designers to think about two things: (1) the continuum of

lJNO ~ntici~m of r.he programmers in Mackay’s study is intended in any

way; they had no charter to create end user customizations.

114

May3-7, 1992

expertise of a group of users who will cooperate in creating ap-
plications; and (2) the endpoints of the continuum. 14 We hear
many exhortations to “Know the user!” but there is not a sin-
gle user to know – there is a community of cooperating users
lying within a particular range of computer expertise. Of all
the things software designers might want to know about users,
understanding their tasks, and their levels of interest and ex-
pertise with computers should be among the highest priorities.

Software designers need to find out, for a given product, where
the continuum of computer expertise starts and ends, and then
incorporate into the product a range of capabilities that takes
advantage of the range of users arrayed along the continuum
– just as today’s most advanced CAD systems provide the ba-
sic drawing and drafting capabilities, a macro language, and
a programming language such as AutoLISP~5 Software prod-
ucts should have a carefully designed set of capabilities tar-
geted specifically for end users, such as the drawing and sim-
ple macro editing/writing capabilities in CAD systems, or for-
mula writing capability in spreadsheets. Then, moving along
the continuum, more advanced users - local developers, gar-
deners and sometimes programmers - need to be supported
with more sophisticated functionality for their own use, and
because they will be the conduit to end users for the product’s
advanced capabilities.

Organizing functionality around different kinds of cooperating
users makes the range of things end users can do with soft-
ware products much greater. It also acknowledges that some
end users will eventually attain more expertise with a program
as they become more familiar with it (whether they come to
act in the supporting role of local developer or not) and will
want to be able to learn more sophisticated capabilities. Some
approaches to end user computing, such as programming-by-
example [19,21] and user modeling [36], assume that not only
do end users remain rather deficient, but that they work in iso-
lation, without a community of cooperating users. This is a
limited view of end users, and will ultimately mean inhibit-
ing their growth and the kinds of applications they can cre-
ate. Three of our users brought this point up in their interviews
spontaneously. (we did not ask about ic it was a topic they in-
troduced because they thought we would be interested.) Rick
described three levels of users who should be supported –in his
terms: “the idiot level, the full-fledged program level, and the
power user level.” Warren, whose CAD system (for electrical
engineering) offers few facilities for specialization, expressed
dismay at the limitations of his system compared with another
more sophisticated system:

Warren: I’m very jealous because they have this
incredible flexible ability to change and do any-
thing. One of the problems with people who write
tools is that they assume . . . they try to protect the
users too much. And they don’t recognize that

14~e rr~~i~~ of a ~ontfiu~ Of cooperating users may not apply to eve~

kind of software product, but it does apply to a large class of products. Coop-

eration among users is increasing, not decreasing. Even home users join user

groups, make use of telephone support, read butletirr boards, ask friends for

help, etc.
15Not eveV CAD system need provide the more advanced capabihties of

course, but there clearly is a demand for them as people attempt applications

of ever-increasing complexity.

there’s different levels of users. You can have be-
ginners, general users and experts, and for the ex-
pert user, a lot of places will hire somebody to be
an expert user just to [do] the customization, to
do all the neat productivity things that make such
a difference. But you have to have that flexibility
to start with. . . . I find myself with most of the PC
[printed circuit] tooIs, there’s not much I can do
with them.

The upper end of the continuum of expertise is perhaps trick-
iest to assess – just how far can users who have a strong in-
terest in computers but who are are not professional program-
mers go? It seems reasonable for at least some CAD programs
to support a programming language such as AutoLISP, while
such a kmguage might not be suitable for other domains where
users are less familiar with computer technology. Of course
to some extent what we have here is a moving target, but we
believe it is worth the effort to do a detailed assessment of po-
tential users’ computer abilities and interests before launching
a product.

Another way that software companies can provide better prod-
ucts is to take advantage of local developers in planning manu-
als. Everyone complains about manuals; end users avoid them,
and local developers use them when they “get stuck.” We be-
lieve that manuals need to be radically re-thought, and that lo-
cal developers ought to be part of that process – they should be
hired by software companies as consultants in the planning and
reviewing of manuals. A set of manuals geared specifically
toward local developers, who are the ones apparently malchg
the most use of them, would be useful. The standard reference
manual format does not tit the bill – at least the complaints
suggest that it does not. Our users mentioned the importance
of well worked examples as being critical; such examples are
often in short supply in reference manuals. Because local de-
velopers report that they use manuals when they “get stuck,”
much more extensive indexing of manuals would seem to be a
promising solution. Given the complexity of today’s software
products, there is a huge number of highly specific places one
can get stuck, and they often fall between the cracks of the
relatively gross categories that comprise the average index.

SUMMARY

We described cooperative work among CAD system users, fo-
cusing on the different activities of end users, local developers
and gardeners. We found that in some organizations the lo-
cal developer role has evolved into the formal or semi-formal
role of “gardener,” obviating the need for professional pro-
grammers. The advantages and problems of the gardener role
were discussed. Suggestions for improving cooperative work
with software systems were given with respect to managing
and supporting users, and for product design. We conclude
that more effective use of software systems will be made when
managers cultivate gardeners, and when software design ef-
forts take into account the patterns of cooperation among dif-
ferent kinds of users working together to create applications.

115

V [HI ’92 Mav3-7.1992

APPENDIX LIST OF INTERVIEW QUESTIONS

1.
2.
3.

4.

5.
6.

7.
8.

9.

What is your job/position?
What is your educational and job-related background?
What is the work processlflow and where does CAD
fit in?
Do you share your work-with others in your group?
If so, how? (Do you share CAD files, paper drawings,
etc.?)
What CAD system is used? For what function?
Has your system been customized? If so, who does it
and what specific customizations have been done?
How did you learn to customize (if applicable)?
Is there a CAD expert in your group? If so, how did

that person get to be the expert?
What do vou Iikeklislike about the svstem You use?

10. What wduld m~e it easier to use (rnanual~,
better organized program, etc.)? What other features
would you like to see?

ACKNOWLEDGEMENTS

Many thanks to Janice Bradford, John Drabik, Chuck Habib,
Dan Hirano, Russell Sanchez, Debbie Schultz, Celeste Welch,
Julie Wilker, Jonathan Yen, and Pete Zivkov for their help in
providing valuable information and names of possible infor-
mants. Jeff Johnson, Nancy Kendzierski, Jim Miller, Andreas
Paepcke, and Craig Zarrner gave helpful comments on earlier
drafts of this paper. We are very grateful to our informants who
willingly donated their time to this study and shared their work
and thoughts with us.

REFERENCES

1. Badham, R. Computer-aided design, work organization
and the integrated factory. IEEE Transactions on Engi-
neering Management 36, 3 (1989), 216-226.

2. Berardinis, L., Dibble, M., Dvorak, P., and Rouse, N.
CADICAM industry report. Machine Design (May 23,
1991), 47-58.

3. Bowen, W. The puny payoff from office computers. In
Computers in the Human Context. T. Forester, Ed. Basil
Blackwell, New York, 1989,267-271.

4. Brooks, L., and Wells, C. Role conflict in design super-
vision. IEEE Transactionson Engineering Management
36,4 (1989), 271-281.

5. Clement, A. Cooperative support for computer work A
social perspective on the empowering of end users. Pro-
ceedings CSCW’90. (Los Angeles, 5-7 October, 1990),
223-236.

6. Cuomo, D., and Sharit, J. A study of human performance
of computer-aided architectural design. International
Journal of Hurnan-Cornputer Interaction 1, 1 (1989),
69-107.

7. Dillon, A., and Sweeney, M. The application of cog-
nitive psychology to CAD. People and Computers IV:
Proceedings of the Fourth Conference of the British

8.

9.

10.

11.

12.

13,

14.

15.

16.

17.

18,

19,

20.

21.

22.

Computer Society Human-Computer Interaction Spe-
cialist Group. (University of Manchester, 5-9 Septem-
ber, 1988), 477-488.

DiSessa, A. A principled design for an integrated com-
putational environment. Human-Computer Interaction
1, (1985), 1447.

Encamacao, J., and Schlechtendahl, E. Computer
AidedDesign: Fundamentals and System Architectures.
Springer-Verlag, Berlin, 1983.

Forester, T. Computers in the Human Context. Basil
Blackwell, New York, 1989.

Foundyller, C. CADICAM, CAE: The Contemporary
Technology. Daratech Associates, Cambridge, Mass.,
1984.

Franke, R. Technological revolution and productivity
decline The case of US banks. In Computers in the
Human Context. T. Forester, Ed. Basil Blackwell, New
York, 1989,281-290.

Graham, B. Applying software tools to enhance engi-
neering group productivity. Proceedings of the Fifth An-

nual Applied Power Electronics Conference and Expo-
sition. (Los Angeles, 11-16 March, 1990), 612-618.

Krouse, J., Mills, R., Beckert, B., and Dvorak, P.
CAD/CAM planning 1990- Managing people and the
technology. Industry Week 239, 13 (1990), CC4-CC1O.

Mackay, W. (1990). Patterns of sharing customizable
software. Proceedings CSClV90. (Los Angeles, 7-10
October, 1990), 209-221.

MacLean, A., Carter, K., Lovstrand, L., and Moran, T.
User-tailorable systems: Pressing the issues with but-
tons. Proceedings, CHI’90. (Seattle, 1-5 April, 1990),
175-182.

Majchrzak, A., Chang, T., Barfield, W., Eberts, R., and
Salvendy, G. Human Aspects of Computer-Aided De-
sign, Taylor and Francis, Philadelphia, 1987.

Manske, F., and Wolf, H. Design work in change: So-
cial conditions and results of CAD use in mechanical
engineering. IEEE Transactions on Engineering Man-
agement 36,4 (1989), 282-292,

Maulsby, D., Witten, I., and Kittlitz, K. Metamouse:
Specifying graphical procedures by example. Computer
Graphics 23 (1989), 127-136.

Maver, T. Social impacts of computer-aided architec-
tural design. Design Studies 7,4 (1986), 178-184.

Myers, B. Text formatting by demonstration. Proceed-

ings CHI’91. (New Orleans, 27 April -2 May, 1991),
251-256.

Nardi, B., and Miller, J. The spreadsheet interface: A ba-
sis for end user programming. Proceedings Interact’90,
(Cambridge, England, 27-31 August, 1990), 977-983.

116

~ [HI ’92 May3-7, 1992

23.

24.

25,

26.

27.

28,

29,

Nardi, B., and Miller, J. Twinkling lights and nested
loops: Distributed problem solving and spreadsheet
development. International Journal of Man-Machine
Studies 34, (199 1), 161-184, (Reprinted in Computer
Supported Cooperative Work and Groupware, S. Green-
berg, ed. Academic Press, London, 1991.)

Panko, R. End User Computing: Management, Applica-
tions, and Technology. John Wiley and Sons, New York,
1988.

Perzanowski, P. Scheduling CAD productivity. AACE
Transactions (1991), 1.1.1-1.1.5.

Petre, M., and Green, T,R.G. Requirements of graphi-
cal notations for professional users: Electronics CAD
systems as a case study. In press. Le Travail Humain
(1991).

Pikaar, R. Situation analysis of design tasks for CAD
systems. Behaviour and Information Technology 8, 3
(1989), 191-206.

Raths, D. Nurturing the flock As the PC population
grows, so does the burden on support staff. InfoWorld,
19 August, 1991,38-40.

Sebborn, M. Customizing of a two-dimensional CAD
system to service the needs of a small high technol-
ogy company. Computer-Aided Engineering Journal
(February, 1989), 13-15.

30.

31,

32.

33.

34.

35.

36.

Shaiken, H. The automated factory: Vision and rerdity.
In Computers in the Human Contexi. T. Forester,Ed.
Basil Blackwell, New York, 1989,291-300.

Sinclair, M., Siemieniuch, C., and John, P. A user-
centered approach to define high-level requirements for
next-generation CAD systems for mechanical engineer-
ing. IEEE Transactions on Engineering Management
36,4 (1989), 262-270.

Sutherland, L SKETCHPAD: A Man-Machine Graphi-
cal Communication System. Proceedings of AFIPS 23,
329-346 (Detroit, May, 1963).

Ulhnan, D., and Dietterich, T. Mechanical design
methodology: Implications on future developments of
computer-aided design and knowledge-based systems.
Engineering with Computers 2, 1 (1987),21-29.

Unman, D., Wood, S,, and Craig, D. The importance of
drawing in the mechanical design process. Computers
and Graphics 14,2 (1990), 263-274.

Warner, T. Information technology as a competitive bur-
den. In Computers in the Human Context. T. Forester,
Ed. Basil Blackwell, New York, 1989,273-280.

Wolz, U. The impact of user modeling on text gener-
ation in task-centered settings. Proceedings Second In-
ternational Conference on User Modeling (Honolulu,29
March -1 APril, 1990).

117

